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Rats adopt the optimal timescale for evidence
integration in a dynamic environment
Alex T. Piet1, Ahmed El Hady1,2 & Carlos D. Brody 1,2,3

Decision making in dynamic environments requires discounting old evidence that may no

longer inform the current state of the world. Previous work found that humans discount old

evidence in a dynamic environment, but do not discount at the optimal rate. Here we

investigated whether rats can optimally discount evidence in a dynamic environment by

adapting the timescale over which they accumulate evidence. Using discrete evidence pulses,

we exactly compute the optimal inference process. We show that the optimal timescale for

evidence discounting depends on both the stimulus statistics and noise in sensory proces-

sing. When both of these components are taken into account, rats accumulate and discount

evidence with the optimal timescale. Finally, by changing the volatility of the environment, we

demonstrate experimental control over the rats’ accumulation timescale. The mechanisms

supporting integration are a subject of extensive study, and experimental control over these

timescales may open new avenues of investigation.
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Decision making refers to the cognitive and neural
mechanisms underlying processes that generate choices.
A well characterized decision-making paradigm is that of

evidence accumulation or evidence integration referring to the
process by which the subject gradually processes evidence for or
against different choices until making a well defined choice.
Evidence accumulation is thought to underlie many different
types of decisions1 from perceptual decisions2–4, to social deci-
sions5, and to value based decisions6.

Most behavioral studies to date have focused on evidence
accumulation in stationary environments. In stationary envir-
onments, the normative behavioral strategy is perfect integra-
tion7, meaning equal weighting of all evidence across time.
However, real world environments change over time. Crucially,
in a dynamic environment older observations may no longer
reflect the current state of the world, and an observer needs to
modify their inference processes to discount older evidence.
Previous studies have demonstrated that humans can modify
the timescales of evidence integration, adopting leaky integra-
tion, which discounts old evidence8,9. These observations open
many questions related to why and how subjects might alter
their integration timescales, and whether the strategy adopted
by humans is the optimal one. Recent studies developed a
connection to normative drift-diffusion models (DDMs), and
examined evidence accumulation in dynamic environments
either in humans9,10, or in ideal observer models11. Glaze et al.9

found that while humans discount evidence, they did not
appear to adopt the optimal discounting timescale. Here, we
expand on a recently developed modeling framework11 to
demonstrate that the optimal discounting strategy depends not
only on the environment’s volatility, but also on the level of
noise in sensory processing. Previous work9,11 incorporated
stimulus statistics into their models, but did not incorporate
sensory noise. We found that once both volatility and sensory
noise are taken into account, rats adopt the optimal integration
timescale. We furthermore show that rats can dynamically
modulate their integration timescale according to changing
environmental statistics. Our findings establish rats as an ade-
quate animal model for studying evidence accumulation and
discounting in a dynamic environment.

Results
A dynamic decision-making task. We developed a decision-
making task that requires accumulating noisy evidence in order
to infer a state that is hidden, and dynamic. Rats were trained to
infer during the course of a trial, which of two states the
environment was in at that moment. In each trial of our task,
we first illuminate a center light inside an automated operant
chamber to indicate that the rat may start the trial by nose-
poking into the center port. While nose poking, auditory clicks
play from speakers positioned on the left and right sides of the
rat. The auditory clicks are generated from independent Pois-
son processes. Importantly, the left and right side Poisson rate
parameters are dependent on a hidden state that changes
dynamically during the course of each trial. This is in contrast
to previous studies where the Poisson click rates are constant
for the duration of each trial12–14. Within each trial, the
dynamic environment is in one of two hidden states S1, and S2,
each of which has an associated left and right click generation
rate (S1: rates r1L and r1R, respectively; S

2: rates r2L and r2R). In this
study S1 and S2 were symmetric (r2R ¼ r2L = high rate r1 and
r2R ¼ r1L = low rate r2). Each trial starts with equal probability
in one of the two states, and switches stochastically between
them at a fixed hazard rate h. On each time step, the
switch probability is given by hΔt, (with Δt kept small enough

that hΔt << 1). At the end of the stimulus period, the auditory
clicks end, and the center light turns off, indicating the rat must
make a left or right choice by entering one of the side reward
ports. The rat is rewarded with a water drop for correctly
inferring the hidden state at the end of the stimulus period (if
S1, go right; if S2, go left). The stimulus duration is variable on
each trial (0.5−2 s), so the rat must be prepared to infer the
current hidden state at all times. Figure 1 shows a schematic of
task events, as well as an example trial. Rats trained every day,
performing 150–1000 self-paced trials per day.

Except where noted, the hazard rate h= 1 Hz, and click rates

γ ¼ log r1
r2

� �
¼ 3, r1 ≈ 38 Hz, and r2≈ 2 Hz were kept constant.

The click rates were chosen to be as difficult as possible while
keeping rat accuracy above 70%. The chosen parameter values
correspond to a high difficulty; as described below, the
performance of the optimal agent for these parameters is
≈77% (Fig. 2f). Trial difficulty is heavily modulated by the
duration of time since the last hidden state change, with the
hardest trials being those that end shortly after a state change.
Trials had random duration with random state changes. Thus,
even within one set of click rates the rats performed a broad
range of trial difficulties. For analytical simplicity and
consistency across the task, we therefore chose to keep click
rates constant in the study.

Optimal inference in a dynamic environment. Here we derive
the optimal, reward maximizing, procedure for inferring the
hidden state. Given that each trial’s duration is imposed by the
experimenter and thus fixed to the rat, maximizing reward is
equivalent to maximizing accuracy7. We build on results from
ref. 11, but a basic outline is repeated here for continuity. Math-
ematical details can be found in Supplementary Note 3.

Before the derivation, it is worth building some intuition.
Because the hidden state is dynamic, auditory clicks heard at the
start of the trial are unlikely to be informative of the current state.
However, because state transitions are hidden, an observer
doesn’t know how far back in time observations are still
informative of the current state. Our derivation derives the
optimal weighting of older evidence. We first consider observa-
tions in discrete timesteps of short duration Δt. Within each
timestep, a momentary evidence sample ε is generated. This
sample is either a click on the left, a click on the right, no clicks,
or a click on both sides (we will consider Δt small enough that
r1Δt << 1 and r2Δt << 1 so that multiple clicks are not generated
within one timestep).

Following ref. 11, the probability of being in State 1 at time t,
given all observed samples up to time t:

P S1jε1¼ t

� � / Pðεt jS1Þ 1� hΔtð ÞP S1jε1¼ t�1

� �þ hΔtP S2jε1¼ t�1

� �� �
:

ð1Þ

We can interpret this equation as the probability of being in
State 1 given all observed evidence up to time t, P(S1|ε1…t), is
proportional to the probability of observing the evidence sample
at time t given State 1, P(εt|S1), times the independent probability
that we were in State 1 given evidence from timesteps 1…t− 1, P
(S1|ε1…t−1). This second term has two components which depend
on the probability of remaining in the same state from the last
time step, (1− hΔt)P(S1|ε1…t−1), and the probability of changing
states after the last time step, hΔtP(S2|ε1…t−1).

Combining the probability of each state, we can write the
posterior probability ratio (Rt) of the current state given all
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previous evidence samples ε1…t:

Rt ¼
PðS1jε1¼ tÞ
PðS2jε1¼ tÞ

¼ Pðεt jS1Þ
Pðεt jS2Þ

1� hΔtð ÞRt�1 þ hΔt
hΔtð ÞRt�1 þ 1� hΔt

� �
: ð2Þ

Observe that in a static environment, h= 0, the term on the far
right simplifies to Rt−1 and Eq. (2) becomes the statistical test
known as the Sequential Probability Ratio Test (SPRT)7,15,16.
When h ≠ 0, the more complicated expression reflects the fact
that previous evidence samples might no longer be informative of
the current state, in a manner proportional to the environmental
volatility h.

In order to compare Eq. (2) to standard decision-making
models like the drift-diffusion model we transform the expression
into a differential equation. We accomplish this by taking the
logarithm of Eq. (2), then substituting â ¼ log Rð Þ, and finally

taking the limit as Δt goes to 0:

dâ ¼ log
Pðεt jS1Þ
Pðεt jS2Þ
� �

� 2h sinh âð Þdt: ð3Þ

This differential equation describes the evolution of the log-
probability ratio of being in each of the two hidden states,

â ¼ log PðS1jε1¼ tÞ
PðS2jε1¼ tÞ
� �

: â > 0 indicates more evidence for S1, while

â < 0 indicates more evidence for S2. Momentary evidence
samples εt are incorporated into the log-probability ratio through

the evidence term, log Pðεt jS1Þ
Pðεt jS2Þ
� �

. The previously accumulated

evidence is forgotten by a nonlinear discounting term,
�2h sinh âð Þ (See Fig. 2c). The evidence discounting reduces the
effect of older evidence, weighting recent evidence more. This
discounting reflects the fact that older evidence may no longer be
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Fig. 1 Dynamic Clicks Task structure and example trial. a Schematic of task events and timing. A center light illuminates indicating the rat may initiate a trial
by poking its nose into a center port. Auditory clicks are generated from state-dependent Poisson processes (the two states are schematized by light green
and light blue backgrounds) and played concurrently from left and right speakers. The hidden state toggles between two states according to a telegraph
process with hazard rate h. When the auditory clicks end, and the center light turns off, the rats must infer which of the two states the trial ended in and
report their decision by poking into one of two reward ports. Trials have random durations so the rat must be prepared to answer at all time points. b An
example trial. The hidden state transitions randomly, and the auditory clicks (black triangles) are generated accordingly. The optimal inference process
(black line; see text for its derivation) accumulates clicks, and discounts accumulated evidence proportionally to the volatility of the environment and click
statistics. For the optimal process, a choice is generated at the end of the trial according to whether the optimal inference variable is above or below 0
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informative of the current state of the environment. In a static
environment, h= 0, the discounting term is eliminated, and the
ideal observer perfectly integrates the momentary evidence
samples. In analysis of the static decision-making models, the
evidence term is commonly approximated by its expectation
(drift) and variance (diffusion), transforming Eq. (3) into the
Drift-Diffusion Model (DDM) for decision making7. In order to
develop a deeper understanding of the optimal inference on our
task, we precisely evaluate the evidence term for each discrete
Poisson evidence sample. This exact evaluation is not possible in
previous decision-making tasks. In a small sample window of
duration Δt, the probability of a Poisson event is rΔt, where r is
the parameter of the Poisson process (provided rΔt << 1). In our
task a momentary sample εt is the result of two independent
Poisson processes and can take on four possible values: a click on
both sides, a click on the right, a click on the left, or no clicks.
Evaluating the evidence term for these four conditions:

A click on both sides

log Pðεt jS1Þ
Pðεt jS2Þ ¼ log P click�RjS1ð ÞP click�LjS1ð Þ

P click�RjS2ð ÞP click�LjS2ð Þ

¼ log r1Δtð Þ r2Δtð Þ
r2Δtð Þ r1Δtð Þ ¼ 0:

ð4Þ

No clicks

log Pðεt jS1Þ
Pðεt jS2Þ ¼ log P no�click�RjS1ð ÞP no�click�LjS1ð Þ

P no�click�RjS2ð ÞP no�click�LjS2ð Þ

¼ log ð1�r1ΔtÞð1�r2ΔtÞ
ð1�r2ΔtÞð1�r1ΔtÞ ¼ 0:

ð5Þ

A click on the right

log Pðεt jS1Þ
Pðεt jS2Þ ¼ log P click�RjS1ð ÞP no�click�LjS1ð Þ

P click�RjS2ð ÞP no�click�LjS2ð Þ

¼ log ðr1ΔtÞð1�r2ΔtÞ
ðr2ΔtÞð1�r1ΔtÞ � þκ r1; r2ð Þ:

ð6Þ

A click on the left

log Pðεt jS1Þ
Pðεt jS2Þ ¼ log P no�click�RjS1ð ÞP click�LjS1ð Þ

P no�click�RjS2ð ÞP click�LjS2ð Þ

¼ log ð1�r1ΔtÞðr2ΔtÞ
ð1�r2ΔtÞðr1ΔtÞ � �κ r1; r2ð Þ:

ð7Þ

We define the function κ(r1, r2) to be the increase in the log-
probability ratio from the arrival of a single click on the right,
given click rates r1, r2. The function κ tells us how reliably each
click indicates the hidden state. This is easily seen when letting
Δt→ 0, so κ ! log r1

r2
. If the click rates r1 and r2 are very similar

(so κ is small) then we expect many distractor clicks (clicks from
the smaller click rate that do not indicate the correct state), so an
individual click tells us little about the underlying state. On the
other hand, if the click rates are very different (so κ is large) then
we expect very few distractor clicks, so an individual click very
reliably informs the current state. In the limit of one of the click
rates going to zero: κ→∞, and a single click tells us the current
state with absolute certainty. In our task, the two click rates r1 and
r2 always sum to 40 Hz. Figure 2a shows κ as a function of the
click rates.

Re-writing the log-evidence term in Eq. (3) in terms of κ and
using δL/R,t to represent the left/right click times, we can
summarize across all four conditions:

dâ ¼ κ r1; r2ð Þ δR;t � δL;t

� �
� 2h sinhðâÞdt: ð8Þ

We can then rescale Eq. (8) by κ, let a ¼ â
κ ¼ logðRÞ

κ , to put our
evidence accumulation equation in units of clicks:

da ¼ δR;t � δL;t �
2h
κ
sinhðκaÞdt: ð9Þ

Equation (9) has a simple interpretation, sensory clicks are
integrated, δR,t− δL,t, while accumulated evidence is discounted,
� 2h

κ sinhðκaÞ, proportionally to the volatility of the environment,
h, and the reliability of each click, κ. This interpretation also
allows for a simple assay of behavior: do rats adopt the optimal
discounting timescale? We will present two quantitative methods
for measuring the rats discounting timescales. However, before
examining rat behavior, we need to examine the impact of
sensory noise on optimal behavior.

Sensory noise decreases click reliability. The function κ(r1, r2)
tells us how reliably each click indicates the underlying state as a
function of the click generation rates r1 and r2. The computation
above of κ assumes that each click is detected and correctly
localized as either a left or right click with perfect accuracy.
Previous studies using pulse-based evidence demonstrate that rats
have significant sensory noise12,17. Sensory noise was measured
through parametric models that included a parameter noise due
to each pulse of evidence. The exact biological origin of this noise
remains unclear. Regardless of its origins, sensory noise is a sig-
nificant component of rodent behavior. However, previous
inference models in dynamic environments have not incorpo-
rated sensory noise.9,11

We now show that sensory noise decreases the reliably of each
click. While sensory noise can be modeled in many ways,
primarily the mislocalization of clicks changes the click reliability.
We analyze the cases of Gaussian noise on the click amplitudes
and missing clicks, and provide a general argument for
mislocalization in Supplementary Note 7. Mislocalization refers
to how often clicks are incorrectly localized to the other speaker
(hearing a click from the left and assigning it to the right). For
intuition, consider that if a rat could never tell whether a click was
played from the right or left then each click would never indicate
any information about the underlying state. We again evaluate
the log-evidence term, now including the probability of click
mislocalization, n:

A click on the right

log
ðr1ΔtÞð1� nÞð1� r2ΔtÞ þ ð1� r1ΔtÞðr2ΔtÞðnÞ
ðr2ΔtÞð1� nÞð1� r1ΔtÞ þ ð1� r2ΔtÞðr1ΔtÞðnÞ

¼ þκ r1; r2; nð Þ:

ð10Þ

A click on the left

log
ðr2ΔtÞð1� nÞð1� r1ΔtÞ þ ð1� r2ΔtÞðr1ΔtÞðnÞ
ðr1ΔtÞð1� nÞð1� r2ΔtÞ þ ð1� r1ΔtÞðr2ΔtÞðnÞ

¼ �κ r1; r2; nð Þ:

ð11Þ

The terms for no clicks, or clicks on both sides evaluate to 0. As
in the case with no sensory noise, the log-evidence is either 0, or
has value κ. We can simplify the expression for κ by letting Δt→
0:

κðr1; r2; nÞ ¼ log
r1ð1� nÞ þ r2n
r2ð1� nÞ þ r1n

: ð12Þ
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variability for different noise levels. Pink dot indicates average rat sensory noise
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Sensory noise decreases how reliably each click informs the
underlying state in the trial, increasing n decreases κ. If n= 0, we
recover the original κ derived without noise. If n= 0.5, then each
click is essentially heard on a random side, and therefore contains
no information so κ= 0. If n= 1, then we simply flip the sign of
all clicks.

Previous studies using the same auditory clicks have shown
that rats have significant sensory noise12,17. We computed an
estimate of the average sensory noise for the rats in ref. 12, finding
an average value of n= 0.35. Figure 2a, b shows κ against n and
click rates r1, r2, and highlights the average rat sensory noise from
ref. 12. Click mislocalization for each rat was estimated by fitting a
parametric model introduced below and in ref. 12. See methods
for estimation of click mislocalization from model parameters.
Two lines of evidence suggest that our estimate of the level of
sensory noise is reliable. First, ref. 12 predicted performance on
single-click trials based on each rat’s sensory noise (Fig. 3b,
ref. 12). Second, we found click mislocalization levels were
constant across a wide range of click rates in ref. 12 (Supple-
mentary Note 6). Figure 2a highlights that sensory noise is the
dominant factor on determining click reliability.

Lower click reliability requires integrating longer. The dis-
counting term of Eq. (9) has κ in the denominator as well as the
argument of the sinh term. As a result, it is not clear how
decreasing the click reliability κ changes the behavior of the
optimal inference agent. To gain insight, consider that if evidence
is very reliable, accurate decisions can be made by only using a
few clicks from a small time window. However, if evidence is
unreliable, a longer time window must be used to average out
unreliable clicks. This intuition is confirmed by plotting the dis-
counting function for a variety of evidence reliability values
(Fig. 2c). Decreasing reliability weakens the evidence discounting
term creating longer integration timescales.

Evidence discounting leads to changes of mind. The optimal
inference equation attempts to predict the hidden state. As the
hidden state dynamically transitions, we expect the inference
process to track, albeit imperfectly, the dynamic transitions. From
the perspective of a subject this dynamic tracking leads to changes
of mind in the upcoming choice. Through the optimal inference
process we can predict the timing of changes of mind by looking
for times when the sign of the inference process changes (sign(a)).
We simulated the optimal inference agent on a large dataset of
trials assuming either no sensory noise (black), or average rat
sensory noise (pink). For both agents we computed the dis-
tribution of when changes of mind happen relative to changes in
the hidden state of the trial. Figure 2d shows the predicted timing
of changes of mind with and without sensory noise, and the
temporal relationship to hidden state changes. As expected,
hidden state changes trigger changes of mind with a temporal
delay that increases with sensory noise.

Linear approximation to discounting function is accurate. The
full nonlinear discounting function, � 2h

κ sinh κað Þ, is complicated
and difficult to interpret. To aid our analysis of rat behavior, we
focus on the accumulation timescale and consider a linear
approximation to the discounting function, −λa, where λ gives
the discounting rate. There are many possible linear approx-
imations with different slopes. A linear approximation using the
slope of sinh at the origin will fail to capture the strong dis-
counting farther from the origin. The best approximation is the
one that achieves the highest accuracy at predicting the under-
lying state. We found the best linear approximation numerically.

Figure 2e shows, for a particular noise level and click rates, the
accuracy of a range of linear discounting agents against the full
nonlinear agent. If λ is tuned correctly, the linear agent accuracy
is very close to the full nonlinear function. We find this to be true
across a wide range of noise values (Fig. 2f). While the optimal
linear discounting strength at each noise level changes (Fig. 2g),
the accuracy is always very close to that of the full nonlinear
theory. For the average level of sensory noise, we find the linear
agent to have 99.8% of the accuracy of the nonlinear model. The
linear model was optimized on a training set of trials, and both
models were evaluated on a test set of held-out trials and achieved
77.15 and 77.34% accuracy respectively. When given identical
sensory noise, the trial-by-trial choices between the linear and
nonlinear models agree on 97% of trials. It is important to note
that a linear approximation in general will not always be close in
accuracy to the full nonlinear theory11, but for our specific click
rate parameters it is an accurate approximation.

Given that a linear discounting function matches the accuracy
of the nonlinear model, we analyze rat evidence discounting
behavior by looking for the appropriate discounting rate or
equivalently the appropriate integration timescale. Specifically, we
compare the rat behavior to this linear discounting equation:

da ¼ δR;t � δL;t � λadt; ð13Þ

where λ is the discounting rate and 1
λ is the integration timescale.

We did not examine whether rats demonstrate nonlinear
evidence discounting because the linear approximation matches
the accuracy of the nonlinear theory.

Reverse correlation reveals the integration timescale. Psycho-
physical reverse correlation is a statistical method to find what
aspects of a behavioral stimulus influence a subject’s choice. Here
we use reverse correlation to find the integration timescale used
by the rats. We normalized the reverse correlation curve to have
an area under the curve equal to one. This step lets the curves be
interpreted in units of effective weight at each time point. A flat
reverse correlation curve indicates even weighting of evidence
across all time points. Previous studies in a static environment
find rats with flat reverse correlation curves12–14. Figure 3a shows
the reverse correlation for an example rat in a dynamic envir-
onment. The stimulus earlier in the trial is weighted less than the
stimulus at the end of the trial indicating evidence discounting.
Figure 3b shows the mean reverse correlations for all rats in the
study. Figure 3c shows the reverse correlation curves from a
family of linear discounting agents, da= δR− δL− λadt, with λ
ranging from 0 to 30. The curves were generated from a synthetic
dataset of 20,000 trials. The weaker the discounting rate, the
flatter the reverse correlation curves. To quantify the discounting
timescale from the reverse correlation curves, an exponential
function ebt was fit to each curve. The parameter b reliably
recovers the discounting rate λ (Fig. 3d).

Rats adapt to the optimal timescale. To compare each rat’s
evidence discounting timescale to the optimal inference equation,
we simulated the optimal linear inference agent on the trials each
rat experienced. We then computed the reverse correlation curves
for both the rats and the optimal linear agent (Fig. 4a). We then
fit an exponential function to each of the reverse correlation
curves. Rat behavior was compared with two optimal agents. The
first optimal linear agent assumes no sensory noise; while the
second agent uses the optimal timescale given the average level of
sensory noise across rats reported in ref. 12 (Fig. 4b). When the
average level of sensory noise is taken into account, the rats
match the optimal timescale. The reverse correlation analysis
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shows that rats are close to the optimal timescale given the
average level of sensory noise in a separate cohort of rats.

A trial-by-trial behavioral model captures rat behavior. In
order to examine individual variations in noise level and inte-
gration timescales, we fit a behavioral accumulation of evidence
model from the literature to each rat12–14. This model generates a
moment-by-moment estimate of a latent accumulation variable.
The dynamical equations for the model are given by:

da ¼ δR;t � ηR � C � δL;t � ηL � C
� �

dt � λadt þ σadW; ð14Þ

dC
dt

¼ 1� C
τϕ

þ ϕ� 1ð ÞC δR;t þ δL;t

� �
: ð15Þ

At each moment in a trial, the model generates a distribution of
possible accumulation values P(a|t, δR, δL). In addition to the click
integration and linear discounting that was present in our
normative theory, this model also parameterizes many possible
sources of noise. Each click has multiplicative Gaussian sensory
noise, ηL=R ¼ N 1; σ2s

� �
. In addition to the sensory noise, each

click is also filtered through an adaptation process, C. The
adaptation process is parameterized by the adaptation strength ϕ,
and a adaptation time constant τϕ. If ϕ > 1 the model has
facilitation of sequential clicks, and if ϕ < 1 the model has
depression of sequential clicks. The accumulation variable a also
undergoes constant additive Gaussian noise W with variance σa2.
Finally, the initial distribution of a has some initial variance given
by σi. See ref. 12 for details on the development and evaluation of
this model. The only modification to the model from previous
studies is the removal of the sticky bounds B, which are especially
detrimental to subject performance given the dynamic nature of
the task. This model is a powerful tool for the description of
behavior on this task because of its flexibility at characterizing
many different behavioral strategies12–14. We parameterized the
model with linear discounting, rather than nonlinear discounting
in the full theory for three reasons. First, the linear discounting
model has been fit to rat behavior in static environments,
allowing a direct comparison to previous results. Second, the
linear model has an analytical solution that greatly facilitates
analysis. Third, the linear model has comparable accuracy to the
nonlinear model with less parameters, simplifying the fitting
procedure and providing a more parsimonious description of rat
behavior.

The model was fit to individual rats by maximizing the
likelihood of observing the rat’s choice on each trial. To evaluate
the model, we compared the reverse correlation curves from the
model and subject. Figure 5a shows the comparison for an
example rat, showing that the model captures the timescale of
evidence discounting seen by the reverse correlation analysis. To
evaluate parameter sensitivity in our model, we approximated the
local likelihood landscape by the Hessian matrix. The inverse of
the Hessian matrix was then used as an estimate of the parameter
covariance18. Supplementary Table 1 shows parameter values and
parameter uncertainty for each rat. We used the eigenvalue
decomposition of each rat’s Hessian matrix to assess whether
parameters in our model trade off against each other. Eigenvec-
tors significantly aligned with multiple parameters can indicate
trade-offs in the likelihood landscape. We found no significant
trade-offs involving the discounting parameter λ (Supplementary
Figure 22). Finally, we plotted the residual error plots for each rat
to identify systematic errors by the model. For each rat, the
residual error was constant in time, indicating our model fit short

and long duration trials equally well (Supplementary Figures 20,
21).

In order to analyze the model fits we compared the best fit
parameters for each rat with those from rats trained on the static
version of the task (data from ref. 12). The evidence discounting
strength parameter λ shows a striking difference between the two
rat populations (Fig. 5b). In the static task, the rats have small
discounting rates indicating an integration timescale comparable
to the longest trial the rats experienced12–14. In the dynamic task,
the rats have strong evidence discounting, consistent with the
reverse correlation analysis.

To assess whether rats individually calibrate their discounting
timescales to their level of sensory noise, we estimated the sensory
noise level from the model parameters. Figure 5b shows each rat’s
fit compared to the numerically obtained optimal linear
discounting levels from Fig. 2b. The rats appear to have slightly
larger discounting rates than predicted by the normative theory.
The deviation from the normative theory may be due to other
parameters in the behavioral model, the fact that we considered
only the average level of sensory adaptation, or other factors. In
order to more directly examine whether the rats were adopting
the optimal timescale, we asked whether the rat’s discounting
rates were constrained by the other model parameters. For each
rat, we took the best fitting model parameters, and froze all
parameters except the discounting rate parameter λ. Then, we
found the value of λ that maximized accuracy on the trials each
rat performed. Note this optimization did not ask to maximize
the similarity to the rat’s behavior. We found that given the other
model parameters, the accuracy maximizing discounting level was
very close to the rat’s discounting level (Fig. 5d) meaning that
other model parameters highly constrain the rats’ discounting
rates. Further, while the discounting rates changed slightly, the
improvement in total trial accuracy changed even less. For all rats,
optimizing the discounting rate increased the total accuracy of the
model by less than 1% (Fig. 5e). Taken together these results
suggest that rats discount evidence at the optimal timescale.

Individual rats in different environments. Previous studies have
demonstrated that rats can optimally integrate evidence in a static
environment12. Here we demonstrated that rats use the optimal
timescale for evidence integration and discounting in a dynamic
environment. But can individual rats change their integration
timescale, to match the volatility of different environments? To
probe this question, we moved four rats from a dynamic envir-
onment (h= 0.5 Hz) to a static environment (h= 0 Hz), and then
back. The rats trained in each environment for many daily ses-
sions (minimum 25 sessions). In each environment, we quantified
the rats’ behavior using the model of Eqs. (14) and (15) above.
Figure 6b shows the recovered evidence discounting parameter
from a model fit to a dataset combined across all rats. For this fit,
we split each rat’s trials from each environment into a first and a
second half in time, and used only the second half, so as to assess
behavior subsequent to any transient effects due to the transition
to a new environment. Consistent with our normative theory, rats
in the h= 0.5 Hz environment show discounting rates approxi-
mately half the strength of rats in the h= 1 Hz environment. One
of the rats provided a large number of trials per session (n=
58,427 0 Hz trials), which gave us the opportunity to examine
how quickly it adapted to the new environment, by fitting the
trial-by-trial model in consecutive blocks of 7500 trials. Only the
evidence discounting parameter λ was fit to each block, the other
parameters we fit separately to the first set of 0.5 Hz trials. Fig-
ure 6 shows the evidence discounting parameter on each of these
7500 blocks. Evidence discounting is stable before the switch, and
then begins to adjust on the first block of trials, reaching the new
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optimal value on the 4th block of 7500 trials. In sum, the data
from this experiment indicate that rats can gradually adjust their
temporal integration behavior to match different environments.

Discussion
Previously accumulation of evidence has been studied in a sta-
tionary environment. These studies have given behavioral and
neural insights into the ability of rats, monkeys, and humans to
optimally accumulate evidence12,19–24. These studies have
showed that subjects can gradually accumulate evidence for
decision-making, adopting long integration timescales. Trial-by-
trial modeling12 revealed that errors originated from sensory
noise, not from the evidence accumulation process. Using a high-
throughput automated rat training, we trained rats to accumulate
and discount pulse-based evidence in a dynamic environment.
Extending results from the literature9,11, we formalized the
optimal behavior on our task, which critically involves dis-
counting evidence on a timescale proportional to the environ-
mental volatility and the reliability of each click. Importantly, our
pulse-based analysis allowed us to separate evidence reliability
into experimenter imposed stimulus statistics and sensory noise.
We find that once sensory noise is taken into account, the rats
have timescales consistent with the optimal inference process. We
used behavioral modeling to investigate rat to rat variability, and
to predict a moment-by-moment estimate of the rats’ accumu-
lated evidence. Finally, we demonstrated rats can adjust their
integration timescales in response to changing environmental
statistics. Our findings open new questions into complex rodent
behavior and the underlying neural mechanisms of decision
making.

Glaze et al.9 examined human decision making in a dynamic
environment, and found that humans show nonlinear evidence
discounting, but do not match the optimal inference process.
Quantifying the subject’s estimates of environmental volatility,
rather than the discounting rate, they found that subjects typically
underestimated the volatility (Fig. 7 of ref. 9). This finding is
consistent with the role of sensory noise decreasing the dis-
counting rate. Incorporating models of human sensory noise into
their analysis could potentially explain deviations from optim-
ality. However, our rats performed more trials than the human
subjects in ref. 9. Human subjects with more experience may
more closely match optimal processes. Unlike ref. 9, we did not
examine whether our subjects demonstrated nonlinear evidence
discounting because the linear approximation in our task is very
close to the nonlinear theory (Fig. 2). Our linear approximation
does not parameterize environmental volatility, so we did not
estimate our rat’s estimate of this parameter. However, with the
estimate of sensory noise from ref. 12 we could accurately predict
the rat’s integration timescales without considering volatility.
Supplementary Figure 18 directly examines whether poor esti-
mates of volatility could explain rat behavior. We find that in a
high click reliability environment, where volatility estimates
should not influence integration timescales, rats discount con-
sistent with the sensory noise predicted timescale.

Our study has several potential limitations. First, the presence
of sensory noise complicates the analysis of behavioral and neural
data. Experimental modulation of sensory noise would provide a
more direct test of our findings. While such a manipulation
would be insightful, it falls outside the scope of this study. Lower
sensory noise would facilitate investigations with harder click
rates, and potentially distinguish the nonlinear and linear dis-
counting models. Second, this study tested a limited range of click
rates and environmental volatilities. Rodent behavior may deviate
from the optimal timescale in different parameter regimes where
other factors influence behavior. Future work should investigate

how integration timescales change over a broader parameter
regime. Third, because the linear and nonlinear inference pro-
cesses are very similar in our parameter regime we focused on the
measurement of the integration timescale. Future work should
utilize a broader parameter regime or lower sensory noise to
investigate whether rodent behavior matches the nonlinear
theory.

Rodent models facilitate the use of a wide range of experi-
mental tools to investigate the neural mechanisms underlying
behavior. Our task will facilitate the investigation of two neural
mechanisms. First, due to the dynamic nature of each trial,
subjects change their mind often during each trial allowing
experimental measurement of changes of mind driven by internal
estimates of accumulated evidence. Previous studies of rat deci-
sion making have identified a cortical structure, the frontal
orienting fields (FOF) as a potential substrate for upcoming
choice memory13,14,25–27. Future work could investigate if and
how the FOF tracks upcoming choice in a dynamic environment
during changes of mind. It will complement already neurophy-
siological studies of changes of mind28,29.

Second, normative behavior in a dynamic environment requires
tuning the timescale of evidence integration to the environmental
volatility. There is a large body of experimental and theoretical
studies on neural integrator circuits30–33. Many circuit mechanisms
have been proposed, from random unstructured networks34,35, feed-
forward syn-fire chains31, and recurrent structured networks of
many forms30,36,37. The task developed here allows for experimental
control of the putative neural integrator’s timescale within the same
subject. Measurement of neural activity in different dynamic
environments, and thus different integration timescales, may shed
light into which mechanisms are used in neural circuits for evidence
integration. For instance, unstructured networks, or feed-forward
networks may re-tune themselves via adjusting read-out weights.
Networks that integrate via recurrent dynamics; however, would re-
tune themselves via changes in those recurrent dynamics. Alter-
natively, measurement of neural activity in different dynamic
environments may reveal fundamentally new mechanisms of evi-
dence integration. For instance, ref. 13 proposed multiple integration
networks with different timescales to account for behavioral changes
in response to cortical inactivations. Our task may allow further
investigation into the structure and dynamics of neural integrators.

Methods
Subjects. Animal use procedures were approved by the Princeton University
Institutional Animal Care and Use Committee and carried out in accordance with
NIH standards. All subjects were adult male Long Evans rats (Vendor: Taconic and
Harlan, USA) placed on a controlled water schedule to motivate them to work for a
water reward.

Behavioral training. We trained 14 rats on the dynamic clicks task (Fig. 1). Rats
went through several stages of an automated training protocol. In the final stage,
each trial began with an LED turning on in the center nose port indicating to the
rats to poke there to initiate a trial. Rats were required to keep their nose in the
center port (nose fixation) until the light turned off as a go signal. The center-
fixation period lasted 2 s on all trials. During center fixation, auditory cues were
played indicating the current hidden state. The duration of the stimulus period
ranged from 0.5 to 2 s. After the go signal, rats were rewarded for entering the side
port corresponding to the hidden state at the end of the stimulus period. The
hidden state did not change after the go signal. A correct choice was rewarded with
24 μl of water; while an incorrect choice resulted in a punishment noise (spectral
noise of 1 kHz for a 0.7 s duration). The rats were put on a controlled water
schedule where they receive at least 3% of their weight every day. Rats trained each
day in a training session on average 120 min in duration. Training sessions were
included for analysis if the overall accuracy rate exceeded 70%, the center-fixation
violation rate was below 25%, and the rat performed more than 50 trials. In order
to prevent the rats from developing biases towards particular side ports an anti-
biasing algorithm detected biases and probabilistically generated trials with the
correct answer on the non-favored side.
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Linear discounting agents. To analyze the performance of linear discounting
agents at varying levels of noise, we created synthetic noisy-datasets. For each level
of click noise, each click switched sides according to the noise level. On each of
these datasets, we numerically optimized the discounting level that maximized the
accuracy of predicting the hidden state at the end of the trial.

Psychophysical reverse correlation. The computation of the reverse correlation
curves was very similar to methods previously reported12–14. However, one addi-
tional step is included to deal with the hidden state. The first step is to smooth the
click trains on each trial with a causal Gaussian filter, k(t), this creates one smooth
click rate for each trial. The filter had a standard deviation of 5 ms.

riðtÞ ¼ δR;t � kðtÞ � δL;t � kðtÞ ð16Þ

Then, the smooth click rate on each trial was normalized by the expected click
rate for that time step, given the current state of the environment. This gives us the
deviation (the excess click rate) from the expected click rate for each trial.

eiðtÞ ¼ riðtÞ � hrðtÞjSiðtÞi ð17Þ

Finally, we compute the choice triggered average of the excess click rate by
averaging over trials based on the rat’s choice.

excess rateðtjchoiceÞ ¼ heðtÞjchoicei ð18Þ

The excess rate curves were then normalized to integrate to one. This was done
to remove distorting effects of a lapse rate, as well to make the curves more
interpretable by putting the units into effective weight of each click on choice. To
quantify the timescale of the reverse correlation curves, we fit an exponential of the
form aebt to each curve. The parameter a is a scale parameter. The parameter b is
the discounting rate, while 1/b is the integration timescale. All exponential fits were
computed using the MATLAB package fit, which used a least squares fit on a linear
scale. 95% Confidence intervals on the exponential fits are shown in Supplementary
Figure 15 and calculated by the fit package.

Behavioral model. Previous studies using this behavioral accumulation of evidence
model12 have included sticky bounds which absorb probability mass when the
accumulated evidence reaches a certain threshold. We found this sticky bounds to
be detrimental to high performance on our task, so we removed them. The removal
of the sticky bounds facilitates an analytical solution of the model. The model
assumes an initial distribution of accumulation values Pðajt ¼ 0Þ ¼ N μ0; σ

2
i

� �
. At

each moment in the trial, the distribution of accumulation values P(a|t, δR, δL) is
Gaussian distributed with mean μ and variance σ2 given by:

μðtÞ ¼ μ0e
λt þ Rt

0
δR;s � C RðsÞð Þ � δL;s � C LðsÞð Þ
� �

ds

¼ μ0e
λt þP#R

i
eλ t�RðiÞð ÞC RðiÞð Þ �P#L

i
eλ t�LðiÞð ÞC LðiÞð Þ

ð19Þ

σ2ðtÞ ¼ σ2i e
λt þ σ2a

2λ e2λt � 1
� �þ Rt

0
σ2s δR;s � C RðsÞð Þ � δL;s � C LðsÞð Þ
� �

e2λtds

¼ σ2i e
λt þ σ2a

2λ e2λt � 1
� �þP#R

i
σ2sCðRðiÞÞe2λ t�RðiÞð Þ þP#L

i
σ2sC LðiÞð Þe2λ t�LðiÞð Þ

ð20Þ

where #R is the number of right clicks on this trial up to time t, and R(i) is the time
of the ith right click. C(R(i)) tells us the effective adaptation for that clicks. For a
detailed discussion of a similar model, see ref. 38.

Given a distribution of accumulation values Pðajt; δR; δLÞ ¼ N μðtÞ; σ2ðtÞð Þ,
and the bias parameter B, we can compute the left and right choice probabilities by:

Pðgo rightÞ ¼ 1
2

1þ erf
� B� μðtÞð Þ

σ
ffiffiffi
2

p
� �� �

; ð21Þ

Pðgo leftÞ ¼ 1� Pðgo rightÞ: ð22Þ

These choice probabilities are then distorted by the lapse rate, which
parameterizes how often a rat makes a random choice. The model parameters θ
were fit to each rat individually by maximizing the likelihood function:

L ¼
Y#trials

i

P rat′s choice on trial ijθ; δiR; δiL
� �

: ð23Þ

BIC analysis supported a reduced model without the initial noise σi and
accumulation noise parameters σa in some rats, but strongly supported keeping the
parameters in other rats. Due to the presence of large discounting rates, these
parameters are difficult to recover in synthetic datasets. Given the mixed BIC
analysis, we included these parameters but constrained them with a half-gaussian
prior on the initial noise σi and accumulation noise parameters σa. The priors were
set to match the respective best fit values from ref. 12. Removal of these priors did
not alter our conclusions about discounting strength, λ. The numerical
optimization was performed in MATLAB, using the function fmincon(). To
estimate the uncertainty on the parameter estimates, we used the inverse Hessian
matrix as a parameter covariance matrix.18 To compute the hessian of the model,
we used automatic differentiation to exactly compute the local curvature39. See
Supplementary Table 1 for parameter estimates and uncertainty values. Brunton
et al.12 extensively analyzed how well this model recovers generative parameters,
finding the model contains one maximum likelihood point in parameter space (See
Section 2.3.3-6 of the supplement to ref. 12).

Calculating noise level from model parameters. Given the model parameters
(σ2s , ϕ, and τϕ), we computed the average level of sensory adaptation on each click
〈C〉. Then, we computed what fraction of the probability mass would cross 0 to be
registered as a click on the other side (See Supplementary Note 5).

n ¼ 1
2

1þ erf
�hCiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2σ2s hCi

p
 ! !

: ð24Þ

Code availability. The code and software that support the findings of this study are
available from the authors upon request.

Data availability
The data that support the findings of this study are available from the authors upon
request.
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