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Abstract

The patch-leaving problem is a canonical foraging task, in which a forager must decide to

leave a current resource in search for another. Theoretical work has derived optimal strate-

gies for when to leave a patch, and experiments have tested for conditions where animals

do or do not follow an optimal strategy. Nevertheless, models of patch-leaving decisions do

not consider the imperfect and noisy sampling process through which an animal gathers

information, and how this process is constrained by neurobiological mechanisms. In this the-

oretical study, we formulate an evidence accumulation model of patch-leaving decisions

where the animal averages over noisy measurements to estimate the state of the current

patch and the overall environment. We solve the model for conditions where foraging deci-

sions are optimal and equivalent to the marginal value theorem, and perform simulations to

analyze deviations from optimal when these conditions are not met. By adjusting the drift

rate and decision threshold, the model can represent different “strategies”, for example an

incremental, decremental, or counting strategy. These strategies yield identical decisions in

the limiting case but differ in how patch residence times adapt when the foraging environ-

ment is uncertain. To describe sub-optimal decisions, we introduce an energy-dependent

marginal utility function that predicts longer than optimal patch residence times when food is

plentiful. Our model provides a quantitative connection between ecological models of forag-

ing behavior and evidence accumulation models of decision making. Moreover, it provides a

theoretical framework for potential experiments which seek to identify neural circuits under-

lying patch-leaving decisions.

Author summary

Foraging is a ubiquitous animal behavior, performed by organisms as different as worms,

birds, rats, and humans. Although the behavior has been extensively studied, it is not

known how the brain processes information obtained during foraging activity to make

subsequent foraging decisions. We form an evidence accumulation model of foraging

decisions that describes the process through which an animal gathers information and
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uses it to make foraging decisions. By building on studies of the neural decision mecha-

nisms within systems neuroscience, this model connects the foraging decision process

with ecological models of patch-leaving decisions, such as the marginal value theorem.

The model suggests the existence of different foraging strategies, which optimize for dif-

ferent environmental conditions and their potential implementation by neural decision

making circuits. The model also shows how state-dependence, such as satiation level, can

affect evidence accumulation to lead to sub-optimal foraging decisions. Our model pro-

vides a framework for future experimental studies which seek to elucidate how neural

decision making mechanisms have been shaped by evolutionary forces in an animal’s sur-

rounding environment.

Introduction

In systems and cognitive neuroscience, decision-making has been extensively studied using

the concept of evidence accumulation [1, 2, 3, 4, 5, 6, 7]. Evidence accumulation has been

implicated for example in social decisions [8], sensory decisions [9, 10], economic decisions

[11], memory decisions [12], visual search decisions [13], and value decisions [14]. Moreover,

neural recordings have given the experimenter the opportunity to investigate a myriad of neu-

ronal mechanisms underlying these decision processes [10, 15, 16, 17, 18, 19, 20, 21, 22, 23,

24]. Although this line of work has revealed a detailed account of the neural mechanisms asso-

ciated with decision-making, an outstanding question remains as to how these mechanisms

have been shaped by selection forces in the animal’s environment [25, 26].

Foraging is one of the most ubiquitous behaviors that animals exhibit, as search for food is

essential for survival [27]. From a cognitive perspective, foraging comprises aspects of learning,

statistical inference, self-control, and decision-making, thus providing the opportunity to

understand how these processes have been shaped by natural selection to optimize returns in

the face of environmental and physiological constraints and costs [26]. The patch-leaving

problem is a canonical foraging task where an animal must decide when to leave a resource to

search for another. Ecological models, such as the well-known marginal value theorem (MVT)

[28], describe patch-leaving decision rules that an animal should use to optimize its food

intake. Deviations from optimal decisions may be due to internal state-dependence or envi-

ronmental characteristics [29]. Studies that link cognitive biases to environmental structure

highlight the importance of studying the decision-maker in their natural environment, by

framing decision making in terms of “ecological rationality” (as opposed to “economic ratio-

nality”) [30, 31].

There is an increased interest to study foraging behavior within a neuroscience context and

link neural signals to relevant foraging parameters [32, 33, 34, 35, 36, 37]. For example, during

a visual foraging task with non-human primates (Macaca mulatta), the activity in the dorsal

anterior cingulate cortex (dACC) region was found to increase while a patch depletes until a

threshold, after which the animal switches patches [32]. Other work has found that neurons in

primate posterior cingulate cortex (PCC) signal decision salience during visual foraging, and

thus relate to disengagement from the current patch [38]. These studies aim to understand the

neural mechanisms behind foraging decisions, and how an animal uses its experience to reach

patch-leaving decisions. While the MVT provides a quantitative basis for understanding patch

decisions in the context of optimal decision-making, it does not give a mechanistic account of

the animal’s internal decision process.
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In this work we formulate a mechanistic model of patch-leaving decisions by linking eco-

logical models of the patch-leaving task with models of evidence accumulation that are used

in systems neuroscience. We call this model the foraging drift-diffusion model (FDDM). This

model builds on previous mechanistic models of patch-leaving decisions [39, 40, 41, 42, 43]. In

our model, patch-leaving decisions are described by a drift-diffusion process [44, 45], which

represents the noisy process through which an animal accumulates evidence (by finding food),

and how this experience is used to decide when to leave the patch. Evidence accumulation and

decisions within a patch are coupled to a moving average process that keeps track of the aver-

age rate of energy available from the environment. We solve for conditions where the model

yields optimal foraging decisions according to the MVT, and perform simulations to analyze

deviations from optimal when these conditions are not met. We show that optimal decisions

can be represented in the model using different decision “strategies”, including an incremental

mechanism, where receiving food reward makes the forager more likely to stay in the patch,

and a decremental mechanism, where receiving food reward makes the forager more likely to

leave. These strategies are adaptive to different environmental conditions, depending on the

uncertain versus known information about the foraging environment. To account for the

salient experimental observation that patch residence times tend to be longer than optimal, we

introduce a marginal utility function into the model and show how this leads to sub-optimal

foraging decisions. Importantly, our model generates testable predictions about the different

decision strategies an animal may employ in an uncertain environment. The model provides a

quantitative connection between foraging behavior and experiments that seek to understand

the neural basis of patch-leaving decisions.

Results

Foraging drift-diffusion model (FDDM)

The model that we term foraging drift-diffusion model (FDDM) includes two coupled equa-

tions. The first is an averaging process to estimate the available energy in the environment [46,

47]. The forager receives rewards according to a time-dependent reward function r(t), which is

zero when outside of a patch. There is a constant cost of s, so that the net rate of energy gain

while in a patch is r(t) − s, and while traveling between patches it is −s. With this information,

the energy intake available from the environment (E) is estimated by taking a moving average

over a timescale τE:

Estimate of available energy

tEdE ¼ ðrðtÞ � s � EÞdt ð1Þ

The second equation provides a mechanistic description of when to leave an individual

patch based on the actual experience of rewards [39, 40, 41, 42, 43]. Motivated by models of

decision-making [44, 45], we represent this using a drift-diffusion process via a patch decision

variable x. Upon entering a patch x = 0, and changes in x occur with evidence accumulation

from a constant drift α and time-dependent rewards r(t). The forager decides to leave the

patch when the threshold of x = η is reached.

Decision to leave a patch

tdx ¼ ða � rðtÞÞdt þ sdWðtÞ; ð2Þ

In the following sections, we show that Eq 2 can account for robust patch-leaving decisions

in the case of noisy sampling of the environment, and can be generalized to exploit knowledge
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of the foraging environment. Fig 1 shows a schematic of the model, an example for the proba-

bility density of x when in a patch, and example traces of E and x across multiple patches.

Table 1 lists the quantities defined in the governing equations.

Food reward and patch characteristics

The function r(t) describes the rate of food reward that the animal receives while in a patch,

and ρ(t) is the density of food in the current patch. The initial density of food in the patch is ρ0,

and when a forager finds and eats a piece of food, the total amount of food remaining in the

patch decreases. To formalize this, we consider that patches have an area of a and that food is

uniformly scattered within a patch in chunk sizes of c. The parameter c interpolates between

continuous (c = 0) and discrete (c> 0) food rewards. If the forager searches at a rate of v, the

probability of finding k chunks of food in a time interval Δt is given by a Poisson distribution

Fig 1. Foraging-drift-diffusion model. (A) Schematic showing the patch-leaving task: A forager estimates the average rate of reward from the environment, and the

decision to leave a patch occurs when the internal decision variable reaches a threshold. Travel time between patches is Ttr, and patches are described by the parameters

ρ0, A, and c (see Table 2). (B) Evolution of the probability density of the patch decision variable (x) while in a single patch, along with the time-dependent probability

that the decision to leave the patch has been made. Blue arrows denote the receipt of food rewards. (C) Energy estimate coupled with the patch decision variable over

multiple patches. (D) Patch depletion with discrete rewards, showing examples of the food reward received and the time-dependent in-patch food density for different

values of the food chunk size (c).

https://doi.org/10.1371/journal.pcbi.1007060.g001

Foraging as an evidence accumulation process

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007060 July 24, 2019 4 / 25

https://doi.org/10.1371/journal.pcbi.1007060.g001
https://doi.org/10.1371/journal.pcbi.1007060


with event rate of ρ(t)vΔt/c. Without loss of generality, we set v = 1, i.e. the forager explores

one unit area per unit time, and define A = a/v as the “patch size”, with units of time. The aver-

age change in patch food density follows a simple exponential decay (see Methods):

hrðtÞi ¼ r0e� t=A; ð3Þ

where t is the time spent in the current patch. The reward rate is defined as the negative change

in patch density,

rðtÞ ¼ � A
drðtÞ
dt

; ð4Þ

which can be calculated in the discrete case by considering the change over a discrete time

interval Δt. The average reward rate is thus given by the same exponential decay as the average

change in patch food density:

hrðtÞi ¼ r0e� t=A: ð5Þ

Fig 1D shows example time traces of patch density and food received for different values of

the chunk size c. In limit of zero chunk size, food reward is continuous and the food reward

rate and patch density are equal to the average density:

lim
c!0

rðtÞ ¼ lim
c!0

rðtÞ ¼ hrðtÞi: ð6Þ

Optimal foraging and patch decision strategies

We solve the model to establish conditions on the drift rate α and the decision threshold η
which lead to approximately optimal patch residence times. To obtain these conditions, we

Table 1. Variable definitions for the coupled model formulation in Eqs 1 and 2.

Energy and patch decision variables

E Estimated environment energy rate

τE Timescale for updates of E

r(t) Current gross rate of energy (food) intake

s Constant cost

x Decision state for when to leave a patch

τ Timescale for updates of x
α Drift rate

η Threshold for decision to leave a patch.

σ Noise for patch decisions

W(t) Wiener process

https://doi.org/10.1371/journal.pcbi.1007060.t001

Table 2. Variables and parameters used to describe patch quality and depletion.

Patch variables and parameters

ρ(t) Time-dependent food density in the current patch

ρ0 Initial food density

A Patch size

c Food chunk size

Ttr Travel time between patches

https://doi.org/10.1371/journal.pcbi.1007060.t002
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analytically treat the simplified case of E = hEi = const., (the estimated value of energy is con-

stant and equal to the actual average), σ = 0, (no noise on the patch decision variable), and

c = 0 (food reward is received continuously). We then relax these assumptions using simula-

tions with an evolving, time dependent estimate of available energy (E), and show that the

derived rules lead to approximately optimal patch decisions over a wide range of parameter

values and configurations of the foraging environment.

First, we rewrite the marginal value calculation for patch residence time (PRT) using the

above notation. If there is a travel time between patches of Ttr, then the average rate of energy

intake is given by a weighted sum of intakes during time in and traveling between patches.

Taking the derivative of the average energy intake rate, setting to zero, and re-arranging, yields

the well-known condition to solve for the MVT-optimal time T� to stay in a patch:

rðT�Þ � s
|fflfflfflfflffl{zfflfflfflfflffl}

marginal in� patch rate

¼

R T�

0
rðtÞdt � s � ðTtr þ T�Þ

Ttr þ T�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

hEi¼average energy rate

ð7Þ

Eq 7 can be written compactly as r(T) − s = hEi, where hEi is the average energy rate from the

environment. If rewards are continuous, e.g. following Eq 6, then the condition r(T) − s = hEi
can be used instead of Eq 2 as a decision rule for when to leave a patch; indeed, this is the origi-

nal rule defined by the marginal value theorem [28]. However, when rewards are stochastic,

the sampling process defined by Eq 2 is needed in order to accurately assess the current level

of rewards remaining in the patch.

The optimal time to remain in a patch, according to the MVT, is obtained by inserting the

average reward rate (Eq 5) in Eq 7:

T� ¼ A ln
r0

hEi þ s
: ð8Þ

Since the MVT assumes continuous rewards, the patch residence time defined by Eq 8 is not

necessarily optimal when rewards are stochastic or discrete; we therefore refer to T� as the

MVT-optimal patch residence time, and note (as shown in subsequent sections) that this

is not purely optimal when the assumptions of the MVT do not hold. Integrating the patch

decision variable (Eq 2) to the threshold and inserting Eq 8 yields a relationship between the

threshold, drift rate, energy, and patch parameters:

Z ¼ A a ln
r0

hEi þ s

� �

� r0 þ hEi þ s
� �

: ð9Þ

If Eq 9 is satisfied, MVT-optimal decisions can be obtained with different values of the drift

rate, α. To define a valid range for α values, we require that there is only a single threshold

crossing up to the time T� (see Methods), and also omit the small range where α and η have

opposite signs. With this we highlight the following different “strategies”:

Density-adaptive : a ¼ r0

Size-adaptive : a ¼
r0 � E � s

ln
r0

Eþ s
Counting : a ¼ 0

Robust counting : a < 0:

ð10Þ
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For each strategy, η is defined by Eq 9 with the corresponding value of α, and substituting E
instead of hEi.

Patch decision strategies can be placed in two categories depending on the signs of α and

η, which give qualitatively different results because evidence accumulation is the difference

between drift and reward. When α> 0 and η� 0, this is an increment-decrement, or incre-

mental, mechanism [41, 48], which in previous work has been suggested as adaptive for the

case when the forager does not initially know the number of expected reward items on the

patch [49]. Finding food decreases x, and makes the forager more likely to stay in the patch,

but otherwise drift increases x towards the positive threshold value. Thus, drift and food

reward have opposite effects on how long the forager stays in a patch.

The density-adaptive and size-adaptive strategies use an increment-decrement mecha-

nism. The density-adaptive strategy (Fig 2B) sets α = ρ0, which is optimal to adapt PRTs to

uncertain food density within each patch (Methods). With this, instantaneous evidence accu-

mulation in Eq 2 is given by (ρ0 − r(t)), which can be interpreted as the difference between

initial and current reward rate in the patch. Thus, on average, this causes the patch decision

variable x to always increase towards the decision threshold; first slowly, and then more

quickly as the patch becomes depleted. The size-adaptive strategy (Fig 2C) uses a drift

value that is optimal to adapt PRTs with respect to uncertainty in the size of each patch

(see Methods). The size-adaptive value of α sets a threshold of η = 0. Since this choice causes

x to first decrease below zero and then rise back to the threshold, this strategy is sensitive

to noise and randomness in the timing of rewards received. We therefore illustrate the

size-adaptive strategy in Fig 2C by choosing a value of α slightly higher than Eq 10, such that

η> 0.

The second category of decision strategies is when α� 0 and η< 0; this represents a ‘dec-

remental’ mechanism of patch decisions [41], where finding food makes the forager more

likely to leave the patch. Here, both finding food and drift have the same effect: they decrease

x towards the negative value of the threshold. The counting and robust counting strategies

use a decremental mechanism. The counting strategy has zero drift rate, such that the forager

leaves only after a set amount of food reward has been received (Fig 2D). Since the choice of

α = 0 can lead to infinite PRTs if patches do not contain as much food as expected, we define

the additional strategy termed ‘robust counting’ which has a nonzero drift α< 0. With a

negative value of α, there is still drift towards the threshold in the absence of food reward

(Fig 2E).

The size-adaptive and counting strategies represent limiting cases of η = 0 and α = 0, respec-

tively, and this makes these choices sensitive to noise. We therefore focus our analysis on the

density-adaptive and robust counting strategies, which both have drift values towards the

threshold but differ in how food affects the probability of staying in the patch. Patch decisions

using these strategies are exactly equivalent to the marginal theorem for the case of E = hEi, σ =

0, and c = 0. In the next section we use simulations to compare model results to MVT optimal

behavior for a range of parameter values when E 6¼ hEi, σ> 0, and c> 0.

Parameter dependence: Noisy evidence accumulation and discrete food

rewards

In the general case, accumulation of evidence will be noisy, food may come in discrete

chunks, the estimate of available energy in the environment will vary as the forager explores

and obtains food rewards, and patches may vary in quality and distribution. We investigate

both a range of environmental configurations and patch parameters as well as different patch

decision strategies. To simplify model analysis, we use τ as the unit of time, and s as the unit

Foraging as an evidence accumulation process
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of energy, and set τE = 50τ to represent that the energy estimate occurs at a longer time scale

than individual patch decisions. We illustrate dominant trends by choosing an intermediate

range for characteristics of the foraging environment: E� = 2s, A = 5τ, and Ttr = 5τ. Note that

the average energy level is set by using Eqs 7 and 8 to solve for the value of ρ0 that leads to a

certain energy level, given the values of the other parameters, and then using this value of ρ0

in the simulations.

Fig 3A shows that for small increases of noise on the patch decision variable, both the mean

energy intake and mean patch residence time stay near MVT-optimal values, but the variance

of patch residence time increases. With zero noise, the mean simulated PRTs are slightly lower

than optimal due to the finite time scale for the moving average estimate of energy; E tends to be

slightly higher than the actual average energy when the agent leaves the patch (e.g. see Fig 1C),

Fig 2. Patch-leaving decision strategies. Different strategies are represented with different choices of the drift rate (α) and the threshold (η) (Eq

10). (A) The optimal threshold from Eq 9 plotted as a function of the drift, showing the general classes of increment-decrement and decremental

strategies. The solid line shows the optimal threshold in the region of parameter space where both α and η have the same sign, and the dotted

line indicates the region where they have the opposite sign. Parameters used are A = 5, E� = 2 (or equivalently, ρ0 = 9.439), and s = 2; these

parameters are also used in (B-E), which illustrate each strategy using discrete rewards and zero noise on the decision variable. (B) The choice

α = ρ0 is optimal for uncertainty in patch food density; this represents an “increment-decrement” mechanism for patch decisions. (C) A

threshold of zero is optimal for uncertainty in patch size. Since η = 0 is sensitive to noise, we choose a small value η> 0 to illustrate. (D) The

counting strategy uses zero drift, so that the forager leaves after a set amount of food rewards (E) The robust counting strategy uses α< 0 so that

there is still drift towards the threshold. Each plot shows the patch decision variable along with the time-dependent patch decision threshold that

changes with receipt of food reward due to updates of energy estimate.

https://doi.org/10.1371/journal.pcbi.1007060.g002

Foraging as an evidence accumulation process

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007060 July 24, 2019 8 / 25

https://doi.org/10.1371/journal.pcbi.1007060.g002
https://doi.org/10.1371/journal.pcbi.1007060


which causes the threshold to decrease in magnitude before the forager leaves the patch (see Fig

2). With higher noise values, the average energy intake decreases, and the effect is larger for the

robust-counting (RC) strategy compared to the density-adaptive (DA) strategy. With the DA

strategy, the variance of patch residence time increases with noise, but the average stays nearly

the same. With the RC strategy, the variance increases more strongly with noise, and for large

values of σ, average patch residence times are longer than optimal.

Fig 3B shows average energy intake and patch residence time when the food chunk size (c)
increases. For both strategies, larger chunk sizes increase the variance of PRTs without much

effect on the mean. However, the two strategies show opposite trends for average energy

intake: with the DA strategy, average energy decreases for large chunk size, but with the RC

strategy, average energy increases for large c, to values that are higher than the optimum deter-

mined by the marginal value theorem. This is why we refer to E� and T� as “MVT-optimal”,

instead of just “optimal”. Using a counting strategy in the case of discrete rewards can lead

to energy intakes higher than MVT-optimal because patch-leaving decisions tend to occur

immediately after receipt of a food reward, instead of after a certain amount of time in the

patch (Fig 2).

With large chunk sizes, the number of food chunks per patch will be small, and therefore

instantaneous food intake and leaving decisions are not well described by a ‘rate’, as expressed

Fig 3. Noisy evidence accumulation and discrete food rewards. Shown are the average and standard deviation of the

energy intake and patch residence times, simulated using intermediate values of the patch parameters: A = 5, Ttr = 5,

and E� = 2 (or equivalently, ρ0 = 9.439). The filled blue curves use the density-adaptive strategy, and the filled orange

curves use the robust counting strategy. The robust counting strategy simulations use α = −0.2ρ0. (A) Simulation

results when the noise on the patch decision variable (σ) is increased. (B) Simulation results when the food chunk size

(c) is increased. Analogous simulation results for a range of different parameter values (see Methods) are shown in S1

and S2 Figs.

https://doi.org/10.1371/journal.pcbi.1007060.g003

Foraging as an evidence accumulation process

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007060 July 24, 2019 9 / 25

https://doi.org/10.1371/journal.pcbi.1007060.g003
https://doi.org/10.1371/journal.pcbi.1007060


with the MVT. The optimum number of food chunks obtained per patch is

Nopt ¼
A
c
r0 � E � sð Þ: ð11Þ

For example, using parameter values from Fig 3, a chunk size of c = 8 leads to Nopt = 4.02. In

this case it is difficult to assess current food density, which is why average energy intake with

the DA strategy is less than MVT-optimal (Fig 3B). For extreme cases where Nopt< 1, which

occurs for example with small patch size, short inter-patch travel times, and low available

energy in the environment, the DA strategy performs poorly, while the RC strategy yields aver-

age energy intake rates that are higher than MVT-optimal (S2 Fig).

Patch uncertainty and adaptive decisions

To this point we have considered cases where patch quality and inter-patch travel times are

the same for all patches; we now ask how the different strategies perform when aspects of the

foraging environment are uncertain and may vary from patch to patch. The MVT predicts

that foragers should stay longer in high quality patches, and shorter in low quality patches.

However, this assumes that as they enter a patch, the forager recognizes the ‘type’ of the

patch and therefore adjusts their expectation of food rewards. We instead consider that the

forager only knows the average patch quality in the environment, and must use this along

with the estimate of E and its current experience of food rewards to determine when to leave

a patch.

We first consider a case where patch quality is uncertain, by varying the initial food density

of each patch. Using the DA strategy in the model, foraging decisions follow the same trend

as the MVT: foragers stay longer in higher quality patches (i.e. patches with higher ρ0) and

shorter in lower quality patches (i.e. lower ρ0). In contrast, the RC strategy yields the opposite

trend: patch residence time decreases with patch quality (Fig 4C). Therefore, in this environ-

ment, while the DA strategy yields an average energy intake and PRT close to optimal, using

the RC strategy yields an energy intake lower than optimal (Fig 4B) due to the increase in

PRTs.

We next consider a different configuration of the foraging environment: food is received in

discrete chunks, patches are randomly distributed about the landscape, but the quality of each

patch is the same. Because each patch contains the same amount of food, an optimal strategy is

to ‘count’, i.e. to leave a patch after a certain amount of food reward is received. Simulations

with noise show that in this environment, the RC strategy leads to a higher average energy

intake than the DA strategy (Fig 4E). This is because the distribution of number of food items

per patch is sharply peaked near the optimal value for the RC strategy, while the distribution

is broader with the peak skewed from optimal for the DA strategy (Fig 4F). Similar to Fig 3B,

Fig 4E shows that the RC strategy leads to mean energy intakes that are higher than the opti-

mum predicted by the MVT, because patch-leaving decisions tend to occur immediately fol-

lowing the receipt of food reward.

Another type of patch uncertainty can come from patches that vary in size. The size-adap-

tive (SA) strategy defined in Eq 10 yields adjustments to PRTs based on the size of each patch

that follow, in the limiting case of zero noise, the optimal times given by Eq 8. However,

because the SA strategy has a threshold of zero, it is very sensitive to noise. In simulations with

added noise, using a small but nonzero threshold (i.e. values close to the SA strategy) yields

similar or slightly lower average energy intakes compared to the DA strategy when patch size

is uncertain (S3 Fig). This suggests that while a forager with an appropriate strategy can nearly

optimally adapt individual patch residence times to uncertainty in patch food density, it is
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more difficult to use a noisy sampling process to adapt individual patch residence times to

uncertainty in patch size.

Sub-optimal behavior: Satisficing

With the exception of the RC strategy in an environment where patch quality is uncertain,

simulations yield average PRTs that are near or slightly lower than optimal. Many studies have

examined patch residence times in comparison to MVT predictions; the most common trend

is that animals tend to stay longer in patches than predicted by the MVT [29]. In this section

we introduce a change to the model to account for this observation.

An animal’s perception of a reward, and subsequent foraging decisions, depend on their

internal state. One way to capture this is by using a utility function approach, borrowed from

behavioral economics [50, 51]. This is also related to ‘satisficing’ [52, 53, 54], defined as the

process by which animals do not seek to maximize food intake, but instead seek to maintain

food intake above a threshold. If food is plentiful, then the marginal utility of increasing intake

is small; in this case, an animal will likely be more concerned with, for example, avoiding

threats than leaving a current patch in search of higher returns. Conversely, if food is scarce,

then survival depends on maximizing the rate of food rewards.

We model this by introducing a function u(E) for the marginal utility of additional rewards,

which depends on E, which is the forager’s time-averaged energy intake from the environment.

The utility function modifies patch decision dynamics by changing the drift rate and the

Fig 4. Different foraging environments with associated patch decision strategies. Shown are simulation results with the density-adaptive and robust-counting

strategies in two different foraging environments. (A,D) illustrates the foraging environment for a given case, (B,E) shows average energy and patch residence time when

a particular strategy is used in that environment along with the MVT-optimal energy energy (E�) and patch residence time (T�), and (C,F) shows simulation results

compared to MVT-optimal strategies in each environment. All simulations use a noise level of s ¼ 0:3 �r0 and a patch size of A = 5, and the robust counting strategy is

implemented by setting α = −0.2ρ0. (A-C) Uncertainty in patch food density. Patches have a Gaussian distribution for initial food density with mean of �r0 ¼ 9:439 and a

standard deviation of Dr0 ¼ 0:3 �r0 , and rewards are received continuously (c = 0). Travel time between patches is constant at Ttr = 5. The solid line in (C) shows an

approximate analytical solution (Methods, Eq 25) for small changes in ρ0 about �r0 . (D-F) Scattered patches with discrete rewards. Food reward is received in discrete

chunks (c = 8) and each patch has the same initial food density of ρ0 = 9.439. Travel time between patches is drawn from an exponential distribution with mean �Ttr ¼ 5.

(F) shows a histogram of simulation results for how many food chunks were taken before leaving the patch, for both the density adaptive strategy (left) and the robust

counting strategy (right).

https://doi.org/10.1371/journal.pcbi.1007060.g004
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impact of receiving food:

tdx ¼ ðauðEÞ � rðtÞuðEÞ� sgnðZÞÞdt þ sdWðtÞ: ð12Þ

Using this form, the utility function decreases the rate of drift towards the threshold, and either

increases or decreases the change in x with food reward depending on whether the threshold

is positive or negative. To define u(E), first recall that the animal must obtain energy E> 0 in

order to survive. In the limit E! 0, we therefore expect that an animal will adopt a foraging

strategy that maximizes energy intake; this is set by u(0) = 1. For high values of E, we expect

that the animal cares less about maximizing food intake rate, and therefore u should decrease.

We consider two functions to represent this:

uexpðEÞ ¼ ð1 � AÞe� bE þ A ð13Þ

ulinðEÞ ¼

(
1 � bE if 1 � bE � A

A if 1 � bE < A
; ð14Þ

where β> 0 is a parameter that determines how fast the marginal utility changes with energy.

An approximate solution for how the marginal utility function affects energy intake and PRT

is obtained by integrating Eq 12 using either Eqs 13 or 14, setting σ = 0 and E = hEi, and com-

bining with Eqs 7 and 8. Note that Eqs 13 and 14 are marginal utility functions, i.e. the change

of utility with respect to changes in energy, and the full utility function can be obtained by

integrating with respect to E. We chose the exponential and threshold linear forms for u(E) to

investigate the model response, and note that other functional forms can be used.

Using either form of the marginal utility function leads to patch decisions that approach

optimal when energy is low, but deviate from optimality when energy is high, in particular for

the larger values of β (Fig 5). Although both forms of the utility function demonstrate longer

than optimal patch residence times, the change of PRTs with energy levels depends on whether

the exponential or threshold linear form is used.

Discussion

In this study, we developed a foraging drift-diffusion model (FDDM) to describe how an ani-

mal accumulates evidence over time in the form of food rewards and uses this experience to

decide when to leave a foraging patch. Our model links ecological models of patch foraging

with drift-diffusion models of decision making. We solved for conditions where the FDDM

yields identical decisions to the marginal value theorem, and performed simulations to show

how deviations from optimality are affected by noisy evidence accumulation and discrete ver-

sus continuous food rewards. By adjusting the drift rate and the threshold for patch decisions,

the model can represent different decision strategies, including an increment-decrement (or

incremental) mechanism, where finding food makes the animal more likely to stay in the

patch, and a decremental mechanism, where finding food makes the animal more likely to

leave the patch. We obtained approximate solutions in addition to model simulations to dem-

onstrate how these different strategies are adaptive, depending on the known and unknown

aspects of the foraging environment. We then showed that incorporating a utility function

into the model can quantitatively account for the common experimental observation that

patch residence times tend to be longer than optimal.

The FDDM model builds on a body of previous work that has considered statistics of patch

depletion [55, 56], averaging mechanisms to estimate available energy [46, 47], and “patch-

leaving potentials” or other mechanistic descriptions of when to leave a patch [39, 40, 41, 42,
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43]. The FDDM model combines these different mechanisms into a single model with a tracta-

ble analytical form, and establishes a framework for future experiments that seek to under-

stand different decision strategies that may depend on environmental characteristics, neural

dynamics, and state-dependence of the animal. In previous studies, the “recent experience-

driven model” considered a finite timescale for updates of energy [47], and another approach

represented the forager as estimating the average “profitability” of the environment [46].

Mechanistic models of patch-leaving decisions have proposed that a forager has a “patch

potential”, which declines in the absence of food and increases when food is found, and then

the forager leaves when the potential crosses zero [39, 40]. Other work has modeled patch-

leaving decisions by considering a leaving potential [41, 42], or the probability of continuing

to stay in the patch for a certain amount of time [43]. We note that all of these models, as well

as the FDDM, can represent similar patch decision mechanisms: the increment-decrement,

or incremental, mechanism refers to when finding food makes the forager more likely to stay,

and the decremental mechanism refers to when finding food makes the forager more likely to

leave [41]. We showed that the counting strategy is a special case of the decremental mecha-

nism for patch-leaving decisions. We note that although we used a drift-diffusion process to

describe patch-leaving decisions, an alternative formulation could use an Ornstein-Uhlenbeck

Fig 5. Sub-optimal behavior. The marginal utility of additional food reward may depend on the current rate of energy intake. We consider two possible functions: (A)

Exponential decreasing utility, shown using A = 0 in Eq 13. (B) Threshold linear decreasing utility (Eq 14), shown here using a threshold of 0.65. Each form of the utility

function has a parameter β that sets how fast the utility decreases with energy. Simulation results using the exponential utility function are shown in (C), and

corresponding results using the threshold linear utility function in (D). For each case of the utility function, the average energy intake and patch residence time are

shown for two different values of β. Solid lines are an approximate solution to the governing equations and points are the mean and standard deviation of simulation

results. Both (C) and (D) use the density-adaptive strategy, and an environmental configuration where patch food density is uncertain (i.e. the same configuration and

parameters as Fig 4A–4C). Analogous results for the robust counting strategy, and an additional environmental configuration, are shown in S4 Fig.

https://doi.org/10.1371/journal.pcbi.1007060.g005
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process to represent leaky accumulation of evidence [57]; these two models will yield similar

results when the time scale for leak is small compared to the patch residence times.

The utility-function approach represents foraging decisions which lead to sub-optimal

energy intake and longer than optimal patch residence times. This formulation relates to the

mechanisms of temporal discounting and satisficing. Temporal discounting, (also called ‘delay

discounting’), refers to when the animal values current rewards more than expected future

rewards [58, 59, 60]. Satisficing refers to when animals do not seek to maximize food intake,

but instead to maintain food intake above a threshold [52, 53, 54]. Various models of cognitive

biases have incorporated these mechanisms to explain cases where the forager stays in a patch

longer than optimal. One way to model a bias is by discounting of future rewards, so that for

example an expected large reward in a new patch is discounted because of the time delay until

which it is available [61]. An alternative model uses a decreasing marginal utility function,

such that an expected large reward in a new patch is not viewed as proportionally better than

the current low rate of reward in an almost-depleted patch, for example due to costs associated

with switching patches [62]. Another possibility is to define a subjective cost that approximates

the aversion to leave the patch [63, 64]. In our model, the utility function can be interpreted as

a satisficing mechanism; if food is plentiful, then the marginal utility of leaving the current

patch to search for a new patch with possibly higher rewards is small, and therefore the animal

stays longer in the current patch. The reason for this could be that the animal is satisfied with

its current rate of food intake, or that due to other factors (e.g. risks involved with continued

search), it values receiving smaller, certain rewards in the present moment instead of leaving

to obtain uncertain but possibly larger rewards. We investigated two examples for the form of

the marginal utility function in Fig 5, and note that an interesting area for future work is to ask

how an animal’s perception of the value or utility of a reward depends on internal state and

external environmental conditions. We also note that because both the density adaptive and

robust counting strategies display longer than optimal patch residence times when the utility

function is introduced (S4 Fig), it would be difficult to use only patch residences times to dis-

tinguish what strategy an agent is using.

Foraging decisions differ from common models of economic choice in a key aspect: deci-

sions are sequential, instead of between discrete alternatives [65]. Experiments with the “self-

control preparation”, where an animal must choose between two alternatives, and the patch

preparation, which is a sequential foraging preparation, have seen behavioral differences even

though from an economic standpoint the setups are equivalent [59]. Considering stay-or-go

choices instead of choices between alternatives is also different from the modeling perspective.

A fundamental aspect of the two-choice decision task is the speed-accuracy tradeoff: this

describes that the longer one waits to make a decision (and thus is able to accumulate more

evidence), the more accurate the decision will be. It also means that easy decisions tend to be

made more quickly than difficult decisions. The two-boundary drift-diffusion model is an

optimal strategy to balance the speed-accuracy tradeoff, in that it acheives the fastest decisions

for a given level of accuracy (or vice versa) [6, 45]. However, the speed-accuracy tradeoff does

not apply to a stay-or-go task such as patch-leaving, where the decision itself is how long to

stay in the patch. In psychology, stay-or-go decisions have been investigated with a “go/no-go”

task, where subjects must respond to one alternative while withholding a response to the

other. Similar to the patch-leaving task, the go/no-go task requires the subject to decide on a

response time. However, since a second alternative still exists (but choices to it are suppressed),

this makes it different from foraging. Casting patch-leaving decisions into a similar context

would require giving the forager knowledge of the two future patches A and B, but then not

allowing choices to patch B. Because of this task difference, go/no-go experiments are better fit

with an “implicit lower boundary” model instead of a model with a single boundary [66]. Since
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we assumed that the forager must search to find the next patch, and subsequent patches are

“reset” each time, independent of the previous patch, the decision to leave was modeled based

only on experience at the current patch. An extension to the FDDM could consider a forager

which keeps memory of a multi-patch environment. In this case, decisions could be based

both on the experience at the current patch, and on specific knowledge of the reward contents

of other patches that are nearby.

In this study we modeled a single forager acting independently. Often times a more realistic

situation involves other agents who simultaneously exist in the environment, which leads to

competitive and/or collective foraging. If foragers are competing for resources, the ideal free

distribution theory describes an optimal way to distribute multiple agents at different food

sources in relation to the quality of food sources and the density of competition [67]. Other

work has asked how competition between foragers may drive differences in individual strate-

gies, and how different foraging strategies are related to heritable genetic variation in C. Ele-
gans [68]. C. Elegans foraging has ‘burst’ and ‘pause’ periods, and a drift-diffusion modeling

approach has previously been used to analyze how decisions adapt to changing environmental

conditions [69]. Considering a competitive environment, the FDDM could be used to simulate

multiple agents who may occupy patches at the same time. In such a case, an individual’s per-

sonal experience of food rewards may not accurately reflect actual patch quality, because of the

simultanous depletion of the patch between agents who may not communicate internal state

or receipt of rewards. It would be interesting to compare this to the cases of uncertain patch

quality that we simulated with an individual forager.

In other cases a group may forage together collectively, leading to individual decisions that

incorporate both non-social and social information (e.g. [70]). Patch-leaving decisions will

then depend on the group reaching consensus. The drift-diffusion modeling framework has

been extended to represent coupled decision-makers who share information to collectively

reach a decision [71], and this approach could be used to extend the FDDM to multiple agents

who make decisions as a group.

We considered that the forager knows the average patch food density ( �r0 ) and the average

patch size (�A), and uses these to set an optimal decision “strategy” by choosing values of the

drift rate (α) and threshold (η). Other models have considered the process of learning about

the environment during foraging using reinforcement learning [72]. Reinforcement learning

(RL) is a framework to represent how an agent that receives information about the state of

the world along with a scalar valued reward signal learns to select actions which maximize the

long run accrued reward. Kolling and Adam [72] reframed the MVT rule as an average reward

RL algorithm, which estimates relative values of staying and leaving using a particular assump-

tion about the patch’s reward rate dynamics. To incorporate RL into the FDDM, one possibil-

ity is that the agent has to learn the patch characteristics ð �r0 ;
�AÞ, and then uses these learned

values to set α and η. Another possibility is that the agent could adjust α and η directly, based

on feedback from the amount of reward received.

Bayesian foraging theories have considered how patch foraging decisions should be based

on a prior estimate of the distribution of patches and expected reward in the environment [73,

74]. For example, if it is known that patches contain a set number of reward items, then finding

a prey item should decrease the probability of staying at the patch. Conversely, if patch quality

is unknown or variable, finding a food item should increase the probability of staying in the

patch. These different decision mechanisms correspond to the robust-counting and density-

adaptive strategies, respectively. Experimental work has shown that bumblebees make exactly

this adjustment to their patch-leaving strategies [75], but bluegill fish do not [76]. Other stud-

ies have considered the effect of reward uncertainty (e.g. [77, 78]), suggesting that foragers
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may not follow optimal rules when patch quality is uncertain [79]. From our simulation

results, one possible explanation for sub-optimal decisions when the foraging environment is

uncertain is adopting the “wrong strategy” (Fig 4).

In the FDDM, the forager has memory of its previous foraging experience through the esti-

mate of available energy. We note that if the available energy in the environment is known,

and does not need to be estimated, then Eq 1 can be omitted by setting E = hEi; we took this

approach to analytically solve for approximately optimal decision strategies. Although we did

not consider it here, the general coupled form of the FDDM in Eqs 1 and 2 can be used to ask

how foraging decisions adapt when the environment changes over time. Previous work has

shown that changing environmental conditions can lead to biases from contrast effects [78],

the speed of environmental fluctuations affects which strategy is optimal [80], and the relative

importance of taking different adaptive strategies depends on the dynamics and predictability

of the environment [56]. Spatio-temporal autocorrelation is a common feature of natural

environments, and this may have driven certain observed decision biases [81]. Related to this,

work has shown that patch time allocation is influenced by recent experiences of travel time

[82, 83, 84], and patch quality [85, 86, 87].

In summary, in this work we developed a mechanistic model of a natural behavior (forag-

ing), with a mathematical form inspired by models used in systems neuroscience. This work

provides a step towards establishing a unifying framework tying concepts from systems neuro-

science, ecology and behavioral economics to study naturalistic decision making. With the

advent of functional imaging [88] and wireless electrophysiological techniques in freely mov-

ing animals [89], one can monitor different brain areas simultaneously along with the detailed

movement and postural dynamics of the animal [90], with the aim to map the involvement of

both neurobiological and biomechanical mechanisms that relate to certain aspects of behavior.

Additionally, recent advancements in closed loop techniques allow precise perturbations of

neural systems that depend on the state and current behavior of the animal [91]. The proposed

model provides a moment-by-moment estimate of the evolution of the decision process,

which enables future work to map brain activity to quantitative behavioral variables using neu-

ral recordings and targeted perturbations.

Methods

Simulation details

Patch-leaving decisions with noisy accumulation of evidence (Eq 2) can be simulated by either

solving the first passage problem for the probability density, or by generating patch trajectories

by simulating a stochastic process. To create Fig 1 we numerically solved the Fokker Planck

equation for the probability density of the patch decision variable using the finite element

method (Supplemental Section S1). In Fig 1C, patch decisions were coupled to the energy

estimate by using the expectation value of the patch residence time; note that alternatively,

individual patch decisions could be coupled with the energy estimate by sampling from the

solution for the probability distribution of patch residence times.

To obtain the results shown in other figures, we simulated individual decision trajectories

by generating random additive noise and a timestep of dt = 0.01τ. For all results where an

average is shown, each case was simulated for a total time of 20000τ. To ensure results did not

depend on initial conditions, averages were computed by starting from t = 1000τ. Additionally,

we ensured that the averaging during the time 1000τ< t< 20000τ included a ‘full cycle’, by

starting the average in a patch and ending after travel between patches.

All simulations were coded in Python.
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Patch depletion

The probability of finding k chunks of food of size c in a patch with food density ρ(t) during a

time interval Δt by a forager searching at a rate v is given by the Poisson distribution:

Pk ¼ Poisson
rðtÞvDt

c
; k

� �

: ð15Þ

When food is found, the total amount of food remaining (aρ) is reduced by an amount kc. On

average, the total amount of food, aρ(t), changes according to

ahrðt þ 1Þi ! ahrðtÞi � hEic; ð16Þ

Using Eq 15, the average number of pieces of food found in one time step is hEi = ρ(t)vΔt/c,
where h�i denotes an ensemble average. With this, average change in density follows a linear

differential equation [55]:

A
dhri
dt
¼ � hri; ð17Þ

where A = a/v is the effective time constant of the patch as defined in the text. Without loss of

generality, we set v = 1, i.e. the forager explores one unit area per unit time. The solution of Eq

17 is the exponential decay given in Eq 3.

Parameter values for different environmental configurations

In the main text we focused on the intermediate parameter values A = 5τ, Ttr = 5τ, and E = 2s.
To investigate the full parameter dependence of the model, we consider scenarios that repre-

sent different configurations of the environment:

1. Low, medium, and high available energy rates. The animal needs to obtain energy E> 0

to survive. We therefore consider three regimes of the amount of energy surplus available

from the environment, defined by considering the MVT-optimal energy in the environ-

ment: low (E� = 0.5s), medium (E� = 2s), and high (E� = 5s).

2. Short, medium, and long inter-patch travel times. We consider this by using three values

for travel times: short (Ttr = τ), medium (Ttr = 5τ), and long (Ttr = 10τ)

3. Small vs large patches. A small patch will be depleted quickly, and a large patch will be

depleted slowly. We consider small patches with A = 1.5τ, and larger patches with A = 5τ.

In all simulations, we set the energy level by using Eqs 7 and 8 to solve for the value of ρ0

that leads to a certain MVT-optimal energy level, given the values of the other parameters.

Simulation results analogous to Fig 3 for the full range of environmental parameters listed

here are shown in S1 and S2 Figs.

Range for drift rate values

Here we determine the values of the drift rate α that lead to valid model behavior, defined by

where there is only a single threshold crossing during the time 0< t< T�. Let αS be the drift

value of the size-adaptive strategy as defined in Eq 10. Using αS yields a threshold of η = 0. For

this case, the patch decision variable will start at x = 0, decrease, and then increase again to

reach the threshold at zero. However, when α< αs, which yields η< 0, the patch decision vari-

able will start at zero and will at first decrease, crossing the threshold at an early time t< T�,
then staying below the threshold before reaching it again at time T�. Therefore, for some range
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of values αcrit< α< αS, there will be two threshold crossings, one at t< T� and one at t = T�,
while outside of this range there is only a single threshold crossing at t = T�.

We solve for the critical value of the drift rate, αcrit, by considering the derivative of the

patch decision variable at t = T�. The critical value is when the derivative of the patch decision

variable changes signs from positive to negative. Using Eqs 2, 5 and 8, this leads to

h
acrit � r0e� T=A

i

T¼T�
¼ acrit � E � s ¼ 0; ð18Þ

which yields αcrit = E + s. For drift values in the range αcrit< α< αS, there will be two threshold

crossings, and therefore a simulation would need an extra rule to “ignore” the first crossing in

order to obtain optimal decisions. We therefore restrict drift values to be outside of this range.

In our analysis, we make a further restriction to simplify results by additionally neglecting the

range 0< α< αcrit, because in this range α and η have opposite signs. Note that when α is near

the boundaries of this range, we can expect patch decisions to be very sensitive to the addition

of noise on the patch decision variable, uncertainty in patch characteristics, and/or if rewards

come in discrete chunks.

Drift and threshold choices for optimal patch residence times with patch

uncertainty

When patches vary in food density and size, we use the average initial patch food density, �r0 ,

and the average patch size, �A, to define values of the drift rate, α, and the threshold, η. Here we

derive expressions for α and η to consider two possible cases: to optimally adjust patch resi-

dence times for uncertainty in patch density, or to optimally adjust patch residence times for

uncertainty in patch size.

Eq 8 is the MVT-optimal form for patch residence time as a function of patch density and

patch size; we rewrite it here using E instead of hEi:

T� ¼ A ln
r0

Eþ s
: ð19Þ

Consider a small change of patch residence time of the form

T ¼ T� þ dT: ð20Þ

To determine the optimal drift rate for uncertainty in patch food density, now consider a small

change in patch density about an average value via the expansion r0 ¼ �r0 þ dr0. Plugging this

into Eq 19, expanding to first order terms, and comparing with Eq 20 yields the optimal first

order changes in patch residence time as function of changes in individual patch density:

dT� ¼
�A
�r0

dr0: ð21Þ

Similarly, considering a change in patch size of the form A ¼ �A þ dA yields an optimal first

order change in patch residence time with changes in patch size:

dT� ¼ ln
�r0

Eþ s
dA: ð22Þ

We derive values for the drift rate and threshold so that either Eq 21 or Eq 22 are satisfied;

these represent two different strategies that an animal may use to adapt to uncertainty in an

environment. In doing so, we demonstrate that both Eqs 21 and 22 cannot be satisfied; the
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strategies represented by these cases represent a tradeoff between optimally adapting to uncer-

tainty in patch density versus optimally adapting to uncertainty in patch size.

Start with the integral of the patch decision variable equation (Eq 2) with zero noise, using

the average reward rate from Eq 5. Then, integrating up to a time T when the threshold is

reached yields

Z ¼ aT þ r0Aðe� T=A � 1Þ ð23Þ

Applying the condition that the threshold is reached at the MVT-optimal patch residence time

in Eq 19 yields a relationship between the threshold and the drift rate:

Z ¼ �A a ln
�r0

Eþ s

� �

� �r0 þ Eþ s
� �

; ð24Þ

where we note that this is the same form as Eq 9, except that here the average patch parameters

�A and �r0 are used. We now combine Eqs 23 and 24, plug in expansions for T = T� + δT and

r0 ¼ �r0 þ dr0, expand to first order in δT, and solve for the first-order changes in patch resi-

dence times:

dT ¼
dr0

�Að� �r0 þ Eþ sÞ
�r0ð� aþ Eþ sÞ þ dr0ðEþ sÞ

�
�Að� �r0 þ Eþ sÞ
�r0ð� aþ Eþ sÞ

dr0;

ð25Þ

where the approximation uses a series expansion in δρ0 to first order terms. Comparing this

with Eq 21 leads a value of α which satisfies optimal adaptation to uncertainty in patch density,

which is simply

a ¼ �r0 : ð26Þ

We use an analogous process to calculate values of the drift rate and threshold for optimal

adaptation to uncertainty in patch size. Again we combine Eqs 23 and 24, then plug in expan-

sions for T = T� + δT and A ¼ �A þ dA, expand to first order in δT, and solve for the first-

order changes in patch residence times:

dT ¼
�r0

�A þ dAð Þ �
�r0

Eþs

� �
�A

�AþdA ðEþ sÞ�A þ �r0dAð Þ

�r0 � a
�r0

Eþs

� �
�A

�AþdA

�
ðEþ sÞ ln �r0

Eþs

� �
þ 1

� �
� �r0

� aþ Eþ s
dA;

ð27Þ

where the approximation uses a series expansion in δA to first order terms. Comparing this

with Eq 22 and solving for α yields the drift rate that satisfies optimal adaptation to uncertainty

in patch size:

a ¼
�r0 � e � s

ln �r0

Eþs

� � : ð28Þ

Using this in Eq 24 yields the threshold value of η = 0. Thus, for optimal adaptation to patch
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size, the decision variable will start at zero, decrease to negative values as the animal finds

food, and then increase back to zero for a decision to leave the patch.

Supporting information

S1 Fig. Full simulation results with added patch decision noise. Shown are the average and

standard deviation of the energy intake (left grid) and patch residence times (right grid), for

the density adaptive strategy (top) and the robust counting strategy (bottom), when the noise

on the patch decision variable (σ) is increased. The robust counting strategy is implemented by

setting α = −0.2ρ0 for each case. Each grid of 9 plots contains simulation results with different

values of the travel time and the MVT-optimal available energy in the environment: columns

correspond to values of Ttr = (1, 5, 10)τ, and rows correspond to values of E� = (0.5, 2, 5)s. For

each plot, the filled blue curve uses a patch size of A = 1.5τ, the filled red curve uses a patch size

of A = 5τ, and solid line is the MVT-optimal energy or patch time.

(EPS)

S2 Fig. Full simulation results with discrete food rewards. The organization of the grid of

plots and other parameters are the same as S1 Fig, but shown here are simulation results when

the food chunks size (c) is increased.

(EPS)

S3 Fig. Uncertain patch size and adaptive strategies. Shown are simulations in an environ-

ment where the patch size is uncertain. The size of individual patches, A, is drawn from a

Gaussian distribution with mean �A ¼ 5 and standard deviation DA ¼ 0:3�A. The average

energy and patch residence times, and the distribution of individual patch residence times,

are shown for three strategies: the density adaptive and robust counting strategies are imple-

mented in the same manner as in Fig 4, and also an approximate size-adaptive strategy with

α = 1.05αS, where αS is the drift value for the size-adaptive strategy. Other parameters are set

corresponding to Fig 4: Ttr = 5, E� = 2 (or equivalently, ρ0 = 9.439), c = 0, and σ = 0.3ρ0. The

bottom three plots show patch residence times for each strategy along with the MVT-optimal

relationship from Eq 8, and the approximate adjustment to PRTs calculated in Eq 27 according

to the value of α for each strategy.

(EPS)

S4 Fig. Full simulation results with different strategies and forms of the marginal utility

function. Analogous results to Fig 5C and 5D are shown here for both the density-adaptive

strategy (left grid) and the robust counting strategy (right grid), each in the two environments

from Fig 4: uncertain patch food density (top row), and scattered patches with discrete reward

(bottom row). Simulation parameters correspond to the analogous cases in Fig 4, except for

the available energy in the environment, which is varied here by changing the value of �r0 in

the simulations. For each case of the utility function, the average energy intake and patch resi-

dence time are shown for two different values of β. Solid lines are an approximate solution to

the governing equations and points are the mean and standard deviation of simulation results.

(A) Results using the exponential marginal utility function (see Fig 5A). (B) Results using the

linear threshold marginal utility function (see Fig 5B).

(EPS)

S1 Appendix. Fokker-Planck formulation and numerical solution for probability density.

(PDF)

S2 Appendix. Optimal energy when patches vary in quality.

(PDF)
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