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Foraging is a fundamental behavior as animals’ search for food is crucial for their survival. Patch
leaving is a canonical foraging behavior, but classic theoretical conceptions of patch leaving decisions
lack some key naturalistic details. Optimal foraging theory provides general rules for when an
animal should leave a patch, but does not provide mechanistic insights about how those rules
change with the structure of the environment. Such a mechanistic framework would aid in designing
quantitative experiments to unravel behavioral and neural underpinnings of foraging. To address
these shortcomings, we develop a normative theory of patch foraging decisions. Using a Bayesian
approach, we treat patch leaving behavior as a statistical inference problem. We derive the animals’
optimal decision strategies in both non-depleting and depleting environments. A majority of these
cases can be analyzed explicitly using methods from stochastic processes. Our behavioral predictions
are expressed in terms of the optimal patch residence time and the decision rule by which an animal
departs a patch. We also extend our theory to a hierarchical model in which the forager learns the
environmental food resource distribution. The quantitative framework we develop will therefore help
experimenters move from analyzing trial based behavior to continuous behavior without the loss of
quantitative rigor. Our theoretical framework both extends optimal foraging theory and motivates
a variety of behavioral and neuroscientific experiments investigating patch foraging behavior.
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I. INTRODUCTION

Nearly all animals forage, as it is essential to ac-
quire energy for survival through efficient search and
harvesting of food resources. Foraging behavior is per-
formed by small organisms like C. Elegans [1, 2] and
Drosophila [3, 4], animals with large spatial ranges like
birds [5, 6], and mammals like rodents [7, 8], mon-
keys [9, 10], and humans [11, 12]. In addition to its
universality across animal species, foraging engages mul-
tiple cognitive computations such as learning of food dis-
tributions across spatiotemporal scales, statistical infer-
ence of food availability, route planning and decision-
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making [11]. As such, foraging utilizes multiple neu-
ral systems in the brain [13], offering researchers the
opportunity to probe these neural computations simul-
taneously. In addition to studying the proximal neu-
ral and behavioral mechanisms shaping foraging across
species, one can also ask how these processes and their
interplay have been shaped by natural selection to opti-
mize returns in the face of environmental and physiolog-
ical constraints [11, 14–16] opening up the opportunity
to perform evolutionary quantitative behavioral studies.
For the aforementioned reasons, there has been an in-
creased interest in studying foraging in a neuroscience
context [13, 17–19].

Since the space of foraging behaviors is vast, it is cru-
cial to build a conceptual framework starting with a
tractable behavior that is sufficiently flexible and rich.
Adhering to this aim, patch foraging is both a com-
mon and understandable behavior, described as fol-
lows [20, 21]: an animal enters a patch of food, harvests
resources, and then leaves to search for another patch of
food [12]. An animal’s behavior can thus be quantified
by its patch residence time distribution, travel time dis-
tribution, the amount of food resources consumed, and
the movement pattern in-between patches. Moreover, the
animal’s reward rate can be computed by its food intake
divided by time. A basic result in behavioral ecology, the
marginal value theorem (MVT) states that an animal can
optimize energy intake by leaving its current patch when
the current reward rate falls below the global average
reward rate of the environment [22]. This gives a theo-
retical foundation for assessing optimal decision-making,
which has also been validated in many behavioral stud-
ies [20, 21, 23–30].

However, the MVT does not describe mechanistically
how an animal uses its foraging experience to learn
key environmental features like the distribution of food
availability, and assumes the animal already knows the
overall average reward rate of the environment. Al-
though mechanistic models of foraging have been pro-
posed [20, 21, 26, 29, 31], these were not derived based
on principles of statistical inference, and therefore cannot
address how optimal decisions depend on the resource en-
vironment and uncertainty in the statistics of food avail-
ability.

In behavioral ecology, many studies have considered a
Bayesian approach to patch leaving, asking how an ani-
mal uses available information to make optimal foraging
decisions [32–49]. However, because most studies con-
sider a specific or narrow range of environmental condi-
tions, it is not clear how a Bayesian approach relates to
other mechanistic models of foraging decisions, and how
such an approach may assist in deriving possible neural
implementations. To date there is not a complete norma-
tive theory of how animals make patch leaving decisions
under a broad class of environmental conditions.

The aim of our study is thus to develop a Bayesian
framework of patch leaving behavior by treating decisions
as a statistical inference problem. Our framework con-

nects normative theory of foraging decisions with mech-
anistic drift-diffusion models, as proposed in [31].

To realize our theoretical framework, we perform the
following model derivations and analysis:

• We consider a series of idealizing limits such as
non-depleting patches, homogeneous environments,
and binary environments. Using probabilistic se-
quential updating, we derive stochastic differential
equations (SDEs) for the belief about the arrival
rate of food in the current patch. This generates
analytically tractable models associated with opti-
mal patch leaving strategies.

• We consider a series of more naturalistic conditions
such as depleting patches, environments in which
the forager returns to depleted patches, and envi-
ronments with many or a continuum of patch types.

• We derive optimal decision strategies for patch
leaving that either maximize the long term reward
rate or minimize the time to enter and remain in
a high yielding patch across all the aforementioned
environmental structures.

• We study how animals can learn the distribution
of patch types in both non-depleting and depleting
environments. This allows us to study how the rate
at which the environmental distribution is learned
depends on environmental parameters.

Following the aforementioned modeling approach, we
arrive at a number of general conclusions concerning the
best strategies for foragers to adopt in different environ-
ments:

• In idealizing limits, patch leaving decision statis-
tics are described by solutions of first passage time
problems for SDEs with absorbing boundaries.

• In non-depleting environments, in which consump-
tion does not diminish food availability, an ideal
forager should minimize their time to find and re-
main in the highest yielding patch in the environ-
ment. This time decreases both as high yielding
patches become more common and as the highest
yielding patch becomes more discriminable.

• In depleting environments, an ideal forager must
estimate the current arrival rate of food within a
patch and when this becomes too low, depart the
patch.

• Across a wide range of task parameters, the forager
should leave a patch when the current reward rate
is matched to the environmental reward rate, as in
the MVT. However, if there is a high level of un-
certainty about the food availability within a patch,
even an ideal forager will tend to stay too long in
low yielding patches (overharvesting) and not long
enough in high yielding patches (underharvesting)
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• When the environment is fully depleting, such that
a forager may return again to patches they may
have already partially depleted, they can minimize
the time to deplete the environment by aiming to
fully deplete patches before leaving them.

Our aforementioned results highlight that we have
found several key deviations from the typical MVT re-
sults of classic optimal foraging theory. These deviations
arise due to either limited information available to the
forager, slow patch depletion, or full environmental de-
pletion.

Another key aspect of our model that extends beyond
classic optimal foraging theory is the ability of our ideal
forager to learn the underlying food arrival rates of the
environment. The forager learns patch arrival rates more
rapidly when rates are high, since food encounters pro-
vide more information than times between food encoun-
ters. Also, arrival rates are learned more quickly in
depleting environments than in non-depleting environ-
ments, since successive food encounters rule out low ini-
tial arrival rates. Combined with the broad range of op-
timal foraging strategies derived assuming the observer
has full knowledge of its environment, our analysis pro-
vides a number of touchstones to be compared with patch
leaving statistics from future and past behavioral studies.

We anticipate that our theoretical framework will pro-
vide a platform to study behavioral and neural mecha-
nisms of naturalistic decision-making in a similar man-
ner as trained decision-making behavior is studied within
systems neuroscience [17]. Our model is therefore useful
in opening up the space for laboratory experiments that
mimic naturalistic patch foraging dynamics and for gen-
erating testable hypothesis under different ecologically
relevant experimental designs.

II. SEQUENTIAL UPDATING FORAGING
MODEL

We model an animal searching a large arena represent-
ing a natural environment with distributed patches of
food (Fig. 1A). When the animal enters a food patch,
it consumes food within the patch until it decides to
leave for another patch. The parameters characterizing
the behavior are: environmental distribution of initial
food density p(λ0), patch size A, food chunk size c, and
mean travel time between patches τ . In this work, we
assume the animal knows the patch size, chunk size, and
the travel time (which is held fixed). Note, we could
model the learning of these parameters as separate se-
quential updating processes (See Discussion for more de-
tails). Our interest is in how an observer can learn the
food density within and across patches over time and use
this information to guide an efficient foraging strategy.

A. Full model

Under simplifying assumptions, we derive a sequen-
tial sampling model for an ideal observer’s posterior of
their current patch’s food yield rate λ(t). To model the
random timing of food encounters, we assume they are
Poisson-distributed with a rate λ(t) = λ0 − ρK(t) that
decreases with K(t) the number of food chunks found
so far, and ρ is the impact of each food chunk on the
arrival rate. Thus, the time tK between the Kth and
(K + 1)th encounter is drawn from the exponential dis-
tribution (λ0 − ρK)e−(λ0−ρK)t. We assume for now that
the observer knows and initializes their belief with the
prior p(λ0) when arriving in a new patch (Fig. 1B). In
Section V, we extend our model to consider the process
by which the distribution p(λ0) is learned. Given the

food encounter sequence x(t) = K ′(t) =
∑K(t)
j=1 δ(t− tj),

an ideal observer updates their belief about the current
arrival rate λ according to

p(λ|x(t)) = p(x(t)|λ)
p0(λ+K(t)ρ)

p(x(t))

∝ (λ/ρ+K)!

(λ/ρ)!
e−λtp0(λ+Kρ), λ ≥ 0. (1)

Food encounters shape the observer’s belief about the
current yield rate λ(t) in two main ways: (1) they give
evidence of higher yield rates, since encounters are more
probable in high yielding patches; and (2) they deplete
the patch, decrementing the yield rate, as described by
the ρ terms in the posterior update. Thus, there is a ten-
sion between the depleting effects of food encounters, and
the evidence they provide for higher yield rates (Fig. 1B).

To better understand how an ideal observer’s evidence
accumulation process evolves, we consider a few different
idealizing limits of Eq. (1). Analyzing these reveals dis-
tinct patterns in the belief dynamics as determined by
task parameters, as we will show.

B. Idealizing limits

Non-depletion. In the limit ρ → 0+, food encounters
do not deplete the rate of food arrival, which could be
due to slow search rates or large patch areas [31]. Taking
this limit, Eq. (1) simplifies considerably to

p(λ|x(t)) =
p0(λ)

p(t1:K(t))
λK(t)e−λt, λ ≥ 0,

so the log-likelihood update for λ ≥ 0 becomes

log p(λ|x(t)) =K(t) log λ− λt− log p(t1:K(t)) + log p0(λ),

(2)

showing that food encounters provide a pulse of evidence
that increases with λ, and a lack of food results in a linear
decrease of the log likelihood of the arrival rate λ.
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FIG. 1. Patch foraging task and model. A. Task environment: An animal enters an arena and forages from patches, each
patch k has some (possibly distinct) initial food yield rate λk0 . B. Ideal observer foraging model: Initial patch yield is drawn
from the distribution p(λ0), generating random food encounter times t1:K , and updating belief of current food arrival rate λ(t)
for patch. The maximum likelihood estimate λMLE gets approaches the true λtrue arrival rate over time. Model idealizations:
C. Non-depletion: Assuming patches are depleted slowly enough to be approximated as ‘non-depleting.’ D. Homogeneous
environments: All patches have the same initial yield rate λ0. E. Binary environment: Two possible initial patch yield rates
λH > λL occur with probability pH and pL.

In binary environments, with two possible arrival rates
λH > λL, we have p0(λ) = pHδ(λ − λH) + pLδ(λ − λL)
where pH + pL = 1. Eq. (2) collapses to a scalar update
equation for the log-likelihood ratio (LLR),

y(t) ≡ log
p(λH |x(t))

p(λL|x(t))

= K(t) log
λH
λL︸ ︷︷ ︸

food encounters

− (λH − λL)t︸ ︷︷ ︸
lack of food

+ log
pH
pL︸ ︷︷ ︸

prior

,

which can be written equivalently as a stochastic differ-
ential equation (SDE) for the rate-of-change of the LLR:

dy

dt
= log

λH
λL

∞∑
j=1

δ(t− tj)︸ ︷︷ ︸
food encounters

− (λH − λL)︸ ︷︷ ︸
lack of food

, (3)

with initial condition set by the prior y(0) = log
pH

1− pH .

Eq. (3) has a form similar to classic evidence accumu-
lation models commonly used to model psychophysical
data from decision-making tasks [50, 51], as well as to
previous models of foraging decisions [31]. Due to its
simple form, it can be analyzed explicitly to determine
how long term statistics are shaped by task parameters.

Homogeneous environments. Another way of simpli-
fying Eq. (1) is to consider homogeneous environments
where knowledge of the patch yield rate is perfect. To
see this, note that if p0(λ) = δ(λ− λ0), then Eq. (1) im-
plies p(λ|x(t)) = δ(λ−(λ0−K(t)ρ)). In other words, the
observer has perfect knowledge that λ(t) = λ0 −K(t)ρ.

Binary depleting environments. We also explore be-
lief updating and patch departure strategies in depleting
binary environments, revealing two phases of yield rate
inference: an initial discrimination phase followed by de-
pletion based decrementing of the yield rate estimate. In
this case, we have p0(λ) = pHδ(λ − λH) + pLδ(λ − λL),
and the associated LLR has a rate-of-change given by the
non-autonomous SDE:

dy

dt
=

Kmax∑
j=1

log
λH − (j − 1)ρ

λL − (j − 1)ρ
· δ(t− tj)− (λH − λL),

(4)

where y(0) = log
pH

1− pH as in the non-depleting case.

These idealizing limits all afford some level of tractabil-
ity. However, we first derive optimal patch leaving strate-
gies in non-depleting binary environments. In this case
we can explicitly derive first passage time statistics asso-
ciated with patch departures, allowing us to examine how
efficient patch leaving depends on environmental param-
eters like patch discriminability (λH/λL) and high patch
prevalence (pH). The trends we find in this idealized
case help us develop and interpret optimal strategies in
more complex cases like depleting environments and in
environments with more than two patch types.
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FIG. 2. Belief updating in binary non-depleting envi-
ronments. A. Distribution of high (λH) and low (λL) patch

types. B. Patch type belief y(t) = log p(λH |x(t))
p(λL|x(t))

increases

with food encounters and decreases between until y(t) = θ
and the observer departs the patch.

III. MINIMIZING TIME TO FIND HIGH
PATCH IN NON-DEPLETING ENVIRONMENTS

A forager in an environment with non-depleting
patches is best off locating a patch with the highest yield
and remaining there. In binary environments with two
yield rates λH > λL (Fig. 2A) and belief update given
by Eq. (3), we show an efficient patch departure strategy
is to set a single threshold on the LLR (or likelihood)
so that when the forager is sufficiently confident they
are in a low yielding patch, they leave. We extend this
approach to consider environments with multiple patch
types (e.g., three or a continuum) and show a similar
thresholding strategy can be used for the forager to most
quickly find and remain in the highest yielding patches.

A. Binary environment

Considering Eq. (3), we analyze a formula for the long
term reward rate of the forager, and identify optimal
parameters for an LLR threshold crossing patch leaving
strategy (Fig. 2B). The reward rate is maximized in the
long time limit as long as the forager eventually ends up
in a high yielding patch, which occurs via a LLR thresh-
olding strategy. A more thorough analysis of the opti-
mal strategy using dynamic programming could be per-
formed, but as the system does not fit the conditions of
decision processes that require time-varying thresholds,
we expect this would yield the same result [52, 53].

Energy intake rate. To begin the analysis, define the
reward rate function to be maximized over a particular
patch leaving policy π for a given total foraging time T :

Rπ(T ) :=
Eπ(T )

T
=
〈EπH(TH , T )〉+ 〈EπL(TL, T )〉

T
,

which is the sum of mean food consumed from high and
low yielding patch visits 〈EπH,L(TL, T )〉 divided by the

total foraging time T . The quantity Eπ(T ) is the aver-
age number of food chunks consumed. Since policies can
condition patch leaving on food chunks consumed, the av-
erage food chunk count for a finite time t in a high/low

patch will likely not be the mean of the Poisson arrival
process λH,Lt. However, consider the limit T → ∞ of
long foraging time:

lim
T→∞

Rπ(T ) = RπH(∞) +RπL(∞),

in which there are three possible scenarios: (a) the for-
ager spends a nonzero fraction of time in both patches so
both RπH,L(∞) 6≡ 0; (b) the forager only spends a nonzero

fraction of time in the high yielding patch so RπL(∞) ≡ 0;
or (c) the forager only spends a nonzero fraction of time
in the low yielding patch so RπH(∞) ≡ 0.

In policies π(a) leading to case (a), the forager
will spend some fraction of time transitioning between
patches and the rest of the time in patches. Define rH
and rL to be the fraction of time spent in the high and
low yielding patches (rH + rL < 1 due to transits), then

lim
T→∞

Rπ(a)(T ) = rHλH + rLλL

for such policies, as the average yield rates λH,L will be
recovered in each patch in the long time limit.

On the other hand, any policy which leads to the for-
ager only visiting one patch type for a finite amount of
time (a nonzero time fraction as T → ∞) must involve
the forager remaining in one patch indefinitely. Other-
wise, if they continued patch leaving indefinitely, they
would spend a nonzero fraction of time in patches of the
other type. As such, policies π(b) and π(c) causing the
forager to (b) stay in the high patch and (c) stay in the
low patch imply

lim
T→∞

Rπ(b)(T ) = λH and lim
T→∞

Rπ(c)(T ) = λL

As the forager’s fraction of time spent in the high (low)
patch type converges to unity, rL → 0 (rH → 0) in case
b (c). Clearly, all policies of type π(b) will maximize long
term energy intake rate.

Thus, we can maximize limT→∞Rπ(T ) via any pol-
icy whereby the forager finds and remains in a high
yielding patch. To do this, we set a lower threshold
θ < log

pH
1− pH on the belief y(t) in Eq. (3), so the for-

ager leaves given sufficient evidence that the patch is low
yielding. We will show subsequently that this leads to a
nonzero probability of remaining in a high yielding patch
indefinitely each time one arrives there. Thus, there is
complete certainty the forager will eventually find and
remain in the high patch for all time.
Minimizing time to arrive in high yielding patch.

Given a constant LLR thresholding strategy, we can de-
rive an implicit equation for how the mean time to arrive
and remain in the high patch T̄arrive(θ) depends on θ.
This quantity can be computed from the high patch es-
cape probability πH(θ), the high patch mean visit time
T̄H(θ) when departing, the low patch mean visit time
T̄L(θ), the known patch fraction pH , and mean transit
time τ . Patch departure time statistics can be deter-
mined explicitly by solving the mean first passage time
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problem for the SDE in Eq (3) with absorbing boundary
at y = θ. With these quantities in hand, we can compute

T̄arrive(θ) =
πH(θ)

1− πH(θ)

(
T̄H(θ) + τ +

1− pH
pH

(T̄L(θ) + τ)

)
+

1− pH
pH

(T̄L(θ) + τ), (5)

where the first term accounts for the number of high
patch visits required to remain in the high yielding patch
and the second term accounts for the time needed to leave
the low yielding patch when starting there. For thresh-
olds further from y(0) = log

pH
1− pH , the escape probabil-

ity πH(θ) decreases and mean exit times T̄H,L(θ) increase.

Intuitively, if θ = log
pH

1− pH , departure from each patch

is immediate, whereas for θ → −∞ then πH(−∞) → 0
but also T̄H,L(θ) → ∞ since the forager never obtains
sufficient evidence to leave a patch. Thus, we expect an
interior solution θ to argminθ∈(−∞,log

pH
1−pH

)

[
T̄arrive(θ)

]
.

We now compute the components of Eq. (5) using first
passage time methods for SDEs [54].

Patch departure time statistics. The problem of finding
the time for a forager to leave a patch can be formulated
as a first passage time calculation. To obtain explicit re-
sults, we derive the corresponding backward Kolmogorov
equation of Eq. (3). To do so, first note that the forward
Kolmogorov equation is

pt(y, t) = +apy(y, t) + λΨ(p(y, t), y)− λp(y, t) ≡ Lp(y, t)

where a = λH − λL and λ ∈ {λH , λL} is the arrival rate
of the current patch, and

Ψ(p(y, t), y) =

{
p(y − b, t), y > θ + b,

0, θ < y < θ + b,

accounts for the fact that jumps in the belief y due to
food encounters can only lead to beliefs that are at least
one jump length b = log λH

λL
from threshold θ. Patch de-

partures are represented by an absorbing boundary con-
dition at the threshold: p(θ, t) = 0. Defining the L2 inner
product 〈u, v〉 =

∫∞
θ
u(y)v(y)dy over real functions, we

determine the adjoint L∗ as 〈Lu, v〉 = 〈u,L∗v〉, yield-
ing the right hand side of the corresponding backward
Kolmogorov equation [54]:

qt = −aqy(y′, t|y, 0) + λq(y′, t|y + b, 0)− λq(y′, t|y, 0)

≡ L∗q(y′, t|y, 0), (6)

with associated initial and boundary conditions
p(y′, 0|y, 0) = δ(y′ − y) for y, y′ > θ and p(y′, t|θ, 0) = 0
for t > 0.

Now to obtain patch departure statistics, we can inte-
grate Eq. (6) over all possible belief values y′ ∈ (θ,∞) to
determine the probability that the patch departure time
T is after the time t. We define the survival function
conditioned on the starting belief y as

P (T > t|y) =

∫ ∞
θ

q(y′, t|y, 0)dy′ ≡ Gj(y, t),

where j ∈ {H,L} indexes the true patch type λj . Upon
integrating Eq. (6), we find

Gjt = −aGy(y, t) + λj [G(y + b, t)−G(y, t)] ≡ L∗Gj ,
(7)

on y ∈ (θ,∞), and note that the absorbing boundary
condition ensures Gj(θ, t) = 0 for t > 0.

Moreover, by taking the limit t → 0 of Eq. (7), we
can derive an equation for the escape probability πj(y) ≡
Gj(x, 0) = P (T ≥ 0|y), which is the probability the belief
ever crosses threshold given it begins at y and t = 0:

0 = −aπ′(y) + λj [π(y + b)− π(y)] ≡ L∗πj(y), (8)

with absorbing boundary condition πj(θ) = 1. Eigen-
solutions of Eq. (8) take the form πj(y) = Aery with
corresponding transcendental characteristic equation

0 = −ar + λje
rb − λj = −(λH − λL)r + λj

(
λH
λL

)r
− λj

= Cj(r). (9)

As λH > λL, C ′′j (r) = λjb
2(λH/λL)r−2 > 0, this implies

Cj(r) is concave up and so has at most two roots: one
is r1 = 0, and when j = H (j = L) the other root is
r2 = −1 (r2 = 1).

To superpose solutions in each case (j ∈ {H,L}), note
when j = L, the average drift

〈ẏ〉 = λL log
λH
λL
− (λH − λL) < 0

of the belief in Eq. (3) is down toward threshold and
we expect limy→∞ πL(y) = 1. Applying this and the
boundary condition πL(θ) = 1, we see πL(y) ≡ 1 when
λ = λL. However, when λ = λH , the average drift

〈ẏ〉 = λH log
λH
λL
− (λH − λL) > 0

is away from threshold, implying limy→∞ πH(y) = 0 and
πH(θ) = 1, yielding πH(y) = eθ−y.

Now to compute the mean first passage time (MFPT)
in either case, note that the probability density function
(pdf) fj(t) of exit times in case j can be calculated from
the normalized survival function

lim
∆t→0

P (T > t|y)− P (T > t+ ∆t|y)

∆t · P (T ≥ 0|y)
= −G

j
t (y, t)

πj(y)
≡ fj(t).

The MFPT T̄j(y) is then obtained by integrating against
the pdf:

T̄j(y) =

∫ ∞
0

tfj(t)dt = −
∫∞

0
tGjt (y, t)dt

πj(y)
=

∫∞
0
Gj(y, t)dt

πj(y)
.

Integrating Eq. (7) over t ∈ (0,∞) and defining Tj(y) :=∫∞
0
Gj(y, t)dt = πj(y)T̄j(y), we see

−πj(y) = −aT ′j (y) + λj [Tj(y + b)− Tj(y)] ≡ L∗Tj .
(10)
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FIG. 3. Statistics of high patch identification in binary non-depleting environments. A,B. The mean time to arrive
and remain in a high yield patch varies nonmonotonically with departure threshold θ and decreases as the patch discriminability
λH/λL and high yield fraction pH are increased. Solid lines are the analytical result in Eq. (5) and dots are averages over 104

Monte Carlo simulations. λH = 2 and pH = 0.5 are fixed unless indicated. C,D. Departure threshold θopt minimizing the time
to arrive in the high patch decreases with λH/λL and varies nonmonotonically with pH . Solid lines are obtained numerically
by solving Eq. (11), dotted lines are the Lambert W function approximation (Eq. (12)), and dashed lines are the asymptotic
expansion in logarithms (Eq. (13)). E,F. The minimal mean time T̄ opt

arrive to arrive in a high yield patch decreases with λH/λL
and pH . We fix λL = 1 and τ = 5.

For j = L, the boundary conditions T̄L(θ) = 0, πL(θ) =
1, limy→∞ T̄L(y) =∞, and limy→∞ πL(y) = 1 imply

T̄L(y) =
TL(y)

πL(y)
=

y − θ
(λH − λL)− λL log λH

λL

.

For j = H, the boundary conditions T̄H(θ) = 0, πH(θ) =
1, limy→∞ T̄H(y) = ∞, and limy→∞ πH(y) = 0 can be
leveraged to find an identical expression for the average
time in the high patch:

T̄H(y) =
TH(y)

πH(y)
=

y − θ
(λH − λL)− λL log λH

λL

.

For the Bayesian model, the prior and initial condition
of a patch is y(0) = log pH

1−pH , so the relevant quantities

for our problem are πL ≡ 1; πH = 1−pH
pH

eθ; and

T̄L = T̄H =
log pH

1−pH − θ
(λH − λL)− λL log λH

λL

.

Substituting these expressions into Eq. (5), we obtain
an explicit formula for T̄arrive as it depends on model
parameters (Fig. 3A,B). Minimizing T̄arrive to find θopt

then requires solving:

argmin
θ∈(−∞,log

pH
1−pH

) (1− pH)

[
1 + eθ

pH − (1− pH)eθ

]

×

[
log pH

1−pH − θ
(λH − λL)− λL log λH

λL

+ τ

]
whose solutions θopt are identified with critical points
obeying θ < log pH

1−pH and

eθ
[
log

pH
1− pH

− θ +Aτ

]
= (1 + eθ)(pH − (1− pH)eθ),

(11)

where A = (λH−λL)−λL log λH
λL

, which we can solve for

θopt numerically (solid lines in Fig. 3C,D). An explicit
approximation of θopt is obtained by dropping the e2θ

term (expecting θ negative) and solving to find

θopt ≈W−1

[
−(1− pH)

(
λH
λL

)λLτ
e−(λH−λL)τe2pH−1

]
+Aτ + log

pH
1− pH

+ 1− 2pH , (12)

where W−1(z) is the (−1)th branch of the Lambert
W function (inverse of z = W eW ). This approxima-
tion compares well with numerical solutions to Eq. (11)
(dotted lines in Fig. 3C,D), and can be further sim-
plified using the approximation W−1(z) ≈ log(−z) −
log(− log(−z)) yielding

θopt ≈ log(1− pH)− log [− log(1− pH) + (λH − λL)τ
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−λLτ log
λH
λL

+ 1− 2pH

]
, (13)

from which we can observe how the optimal threshold
scales in limits of environmental parameters (dashed lines
in Fig. 3C,D).

Examining Eq. (12), we see that when high yield
patches are rare (pH → 0), the optimal threshold di-
verges as θopt → −∞ with the scaling log pH , since the
initial condition becomes more negative. When low yield
patches are rare and pH → 1, θopt → −∞ since the
first selected patch will almost always be high yielding.
Therefore, if high yielding patches are very rare or com-
mon, the threshold should be moved far from zero to re-
quire high certainty when abandoning a patch. Between,
θopt > −∞ varies nonmonotonically in pH . For large
λH/λL � 1, θopt ∼ − log(λH), since patches are eas-
ier to distinguish as λH increases, so again high certainty
can be required to depart a patch. In the limit λH → λL,
θopt ≈ log(1−pH)− log [− log(1− pH) + 1− 2pH ]. Note,
when both increasing discriminability (λH/λL) and the
high yield patch fraction pH , the minimal mean time
T opt

arrive needed to arrive and remain in a high yield patch
decreases (Fig. 3E,F).

Thus, the problem of patch leaving can be reduced
to a threshold crossing process in the case of a bi-
nary non-depleting environment. Indeed, we find the
model is tractable enough to identify explicit scaling re-
lations between model parameters and decision strate-
gies. Namely, the time to arrive and remain in the high
yielding patch increases as high patches become less dis-
criminable (λH/λL close to one) and more rare (small
pH). Patch departures require more certainty when high
patches are more discriminable and/or are very rare or
common. Next, we extend our study of the high patch
arrival problem to non-depleting environments with more
than two patch types. Again, we find this can be accom-
plished by setting a threshold on the belief about whether
or not the agent is in the highest yielding patch or not.

B. Three patch types

In ternary environments, there are three patch arrival
rates λ1 > λ2 > λ3 ≥ 0 with p0(λ) =

∑3
j=1 pjδ(λ − λj)

and
∑3
j=1 pj = 1 (Fig. 4A). Representing log-likelihoods

using Eq. (2) and defining LLRs y1 = log p(λ1|x(t))
p(λ2|x(t)) and

y2 = log p(λ1|x(t))
p(λ3|x(t)) for the beliefs within a patch given the

food encounter time series x(t) =
∑K(t)
j=1 δ(t−tj), we have

the planar system

y′1 = log
λ1

λ2

K(t)∑
j=1

δ(t− tj)− (λ1 − λ2), (14a)

y′2 = log
λ1

λ3

K(t)∑
j=1

δ(t− tj)− (λ1 − λ3), (14b)

where y1(0) = log p1
p2

and y2(0) = log p1
p3

. Note that we

can recover any of the three likelihoods from y1 and y2

by the following mappings

p(λj+1|x(t)) =
e−yj

1 + e−y1 + e−y2
,

where y0 = 0 for j = 0. An argument similar to the bi-
nary case demonstrates that the best patch leaving poli-
cies in ternary environments cause the forager to find and
remain in the highest yielding patch (λ1). This is accom-
plished by thresholding the probability of being in the
high yielding patch, so when p(λ1|x(t)) = φ ∈ (0, p1),
the forager exits the patch. In (y1, y2) space, this thresh-
old is a parameterized curve

yφ2 = − log

[
1− φ
φ
− e−y

φ
1

]
, yφ1 ∈ (− log

1− φ
φ

,∞),

(15)

bounded by limyφj→∞
yφk = − log 1−φ

φ ≡ θ, suggesting

we approximate the boundary in Eq. (15) with y1, y2 ≥
θ. This leads to the forager departing the patch given
sufficient evidence they are not in the highest yielding
patch (Fig. 4B).

Given such a strategy, the mean time T̄arrive to arrive
and remain in the high yielding patch is computed from
the escape probability π1(θ) from the high yielding patch
and the mean times to visit each patch T̄j(θ) (j = 1, 2, 3)
when escaping. As before, the forager will always escape
the lower yielding patches (2 and 3). The mean arrival
time is then given by

T̄arrive(θ) =
π1(θ)

1− π1(θ)

(
T̄1(θ) + τ

)
(16)

+
1− p1

p1

p2(T̄2(θ) + τ) + p3(T̄3(θ) + τ)

1− π1(θ)
.

While we could compute the needed MFPT statistics
for Eq. (16) by solving a corresponding backward Kol-
mogorov equation, the resulting two-dimensional delayed
PDE proves more computationally expensive to solve
than Monte Carlo sampling Eq. (14). We thus save a
more detailed asymptotic analysis of higher order PDEs
associated with multi-patch problems for future work,
and report results from sampling here (Fig. 4C-F). The
mean high patch arrival time T̄arrive depends strongly on
the high patch food arrival rate λ1, decreasing consider-
ably as the patch becomes more discriminable (Fig. 4C).
On the other hand, T̄arrive depends weakly on the worst
patch’s food arrival rate λ3 (Fig. 4D). The discriminabil-
ity of λ2 and λ3 does not strongly affect the observer’s
ability to determine whether a patch is high yielding (λ1)
or one of the two lower yielding patches (λ2 or λ3) as long
as λ1 and λ2 are sufficiently discriminable. In a related
way, T̄arrive is much more strongly affected by changes in
the fraction of the high yielding patch (p1: Fig. 4E) than
changes in the balance of the middle (λ2) and low (λ3)
patches (Fig. 4F).
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FIG. 4. Ternary (3 patch) non-depleting environments. A. Distribution of three possible patches. B. Patch beliefs

y1(t) = log p(λ1|x(t))
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and y2(t) = log p(λ1|x(t))
p(λ3|x(t))

increase with food encounters and decrease between until either reaches the

departure threshold θ. C. Mean time T̄arrive to arrive and remain in highest yielding patch λ1 (Eq. (16)) decreases with patch
discriminability λ1 as does the optimal departure threshold θopt (circles). Other parameters are λ2 = 2, λ3 = 1, τ = 5,
and p1 = p2 = p3 = 1/3. D. T̄arrive increases with λ3 as does θopt, since the worst patches become less easy to distinguish
from the best (λ1 = 3). Other parameters as before. E. T̄arrive decreases with the prevalence of the best patch p1 (while
p2 = p3 = (1− p1)/2), but θopt varies non-monotonically. F. T̄ opt

arrive increases with p2 (while p1 = 0.333 and p3 = 1− p1 − p2)
as does θopt. All curves for T̄arrive computed from 106 Monte Carlo simulations.

Importantly, the optimal threshold θopt decreases as
patches become more easily discriminable (Fig. 4C,D),
but can vary non-monotonically with the fraction p1 of
high patches as in the binary environment (Fig. 3D). In-
creases in θopt at lower values of p1 arise from the fact
that departure from high valued patches will be inter-
spersed with long sequences of visits to lower yielding
patches. Thus, there is a higher premium on distinguish-
ing the high yielding patch when actually in one, similar
to how subjects raise their decision thresholds when in-
tertrial intervals are lengthened in two alternative forced
choice paradigms [55]. At higher values of p1, one is more
likely to land in a high yielding patch, so again one can
afford to require more certainty to depart.

We now extend our analysis of departure strategies to
environments with N > 3 patch types. As before, we
expect that patch discrimination will mainly be impacted
by the spacing between the highest and second highest
food arrival rates λ1 and λ2, as we now show in detail.

C. More patch types

Consider environments with N patch types having ar-
rival rates λ1 > λ2 > · · · > λN ≥ 0 with p0(λ) =∑N
j=1 pjδ(λ−λj) and

∑N
j=1 pj = 1 (Fig. 5A). In this case,

defining the LLRs yj = log p(λ1|x(t))
p(λj+1|x(t)) for j = 1, ..., N−1,

yields the N − 1-dimensional system

y′j = log
λ1

λj+1

∞∑
j=1

δ(t− tj)− (λ1 − λj+1), (17)

where yj(0) = log p1
pj+1

, and any likelihood can be recov-

ered as

p(λj+1|x(t)) =
e−yj

1 +
∑N−1
k=1 e−yk

,

where y0 = 0 for j = 0.
A full analysis of optimal strategies across a broad

range of parameters is prohibitive, so we focus on the
impact of varying a single departure threshold θ on the
time to arrive and remain in a high yielding patch. Not-
ing the weak dependence of arrival times on parameters
for the low patch (p3 and λ3) in the three patch case, we
consider simplified strategies in which the observer only
tracks the first L LLRs y1, y2, ..., yL and compares these
with the threshold θ to decide when to leave the patch
(Fig. 5B). Thus, we compute the mean time to arrive and
remain in the high patch:

T̄arrive(θ) =
π1(θ, L)

1− π1(θ, L)

(
T̄1(θ, L) + τ

)
(18)

+
1− p1

p1

∑N
j=2 pj(T̄j(θ, L) + τ)

1− π1(θ)
,
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FIG. 5. Finding high yielding patches among many patch types. A. Environment with 5 patch types. B. Patch beliefs

yj(t) = log p(λ1|x(t))
p(λj+1|x(t))

evolve on an N − 1-dimensional space until one yj (j = 1, ..., L ≤ N − 1) reaches θ. C. The mean time

T̄arrive to arrive and remain in highest yielding patch λ1 as computed in Eq. (18) slightly decreases as more LLRs (L increases)
are used (pj = 1/N , λj = 6− j, j = 1, 2, 3, 4, N = 5). D. Continuum of patch types given by an exponential prior λ ∼ exp[α].
The forager departs a patch when the probability that the arrival rate is above threshold (λ > λθ) falls to a threshold value
Pt(λ > λθ) = θ. E. The posterior p(λ|x(t)) of the patch arrival rate is shifted up by food arrives, while it decreases in the
time between. The mass Pt(λ > λθ) follows the same pattern. F. There is an optimal θ that minimizes the time to arrive
and remain in a high yielding patch (λ > λθ), and the optimal time T̄ opt

arrive (circles) increases as the acceptable arrival rate is
increased. α = 1 is used here. In C and F, 107 Monte Carlo simulations are used to compute the curves T̄arrive.

where patch departure strategy depends on the number
L of LLRs thresholded and the threshold θ used. In a
five patch type example, performance depends weakly
on L > 2, and it is sufficient to simply track the LLRs
between the first three patches (Fig. 5C).

D. Continuum limit

Next, consider the limit of many patches, in which
patch arrival rate λ is drawn from a continuous distri-
bution p0(λ) defined on λ ∈ [0,∞) (Fig. 5D). This gen-

eral case is described in Eq. (2). Rather than resorting
to LLRs, we retain the posterior p(λ|x(t)), and compute
the mass of a thresholded portion of this pdf. Given
a reference arrival rate λθ, we track P (λ > λθ|x(t)) =∫∞
λθ
p(λ|x(t))dλ. This is analogous to a forager who seeks

patches with yield rates λθ or above, but deems lower
yield rates to be insufficient. For any continuous pdf
p0(λ), the maximum λ will never be sampled, so arriv-
ing and remaining in the true maximum yielding patch
is infeasible.

For the case of an exponential prior p0(λ) = αe−αλ,

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 24, 2020. . https://doi.org/10.1101/2020.04.22.055558doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.22.055558


11

given K(t) food arrivals, we can compute

P (λ > λθ|x(t)) =
1

p(x(t))

∫ ∞
λθ

αe−αλλK(t)e−λtdλ

=
α

(α+ t)K(t)+1p(x(t))

∫ ∞
(α+t)λθ

νK(t)e−νdν

=
α

(α+ t)K(t)+1p(x(t))
Γ(K(t), (α+ t)λθ),

where Γ(s, x) is the incomplete gamma function, and in
a similar way

P (λ < λθ|x(t)) =
α

(α+ t)K(t)+1p(t1:K(t))
γ(K(t), (α+ t)λθ),

where γ(s, x) is the lower incomplete gamma function.
As such, we can compute the LLR

ρ(t) = log
P (λ > λθ|x(t))

P (λ < λθ|x(t))
= log

Γ(K(t), (α+ t)λθ)

γ(K(t), (α+ t)λθ)
,

(19)

and state the forager departs the patch when ρ(t) ≤ θ̂

or when P (λ > λθ|x(t)) ≤ θ := 1/(1 + e−θ̂) (Fig. 5D,E).
Note, to allow evidence accumulation, we require that
θ < α

∫∞
λθ

e−αλdλ = e−αλθ ≡ φ, which represents the

fraction of patches where λ ≥ λθ.
As with other cases, we can compute the mean time

to find and remain in a patch of high enough quality. In
fact, we can marginalize over all patch types of each class
(high and low) to compute the probability of escaping a
high patch across all high patches,

πH(θ;λθ) =

∫ ∞
λθ

p0(λ)π(θ;λ)dλ,

and the mean time per visit to a high and low patch
types,

T̄H(θ;λθ) =

∫ ∞
λθ

p0(λ)T̄ (θ;λ)dλ,

T̄L(θ;λθ) =

∫ λθ

0

p0(λ)T̄ (θ;λ)dλ,

when departing across all patches of each type. We
compute the integrals above via Monte Carlo sampling.
Defining pH =

∫∞
λθ
p0(λ)dλ, the mean arrival time is then

given by the two patch formula, Eq. (5), as we have par-
titioned the environment into two patch categories.

As the observer places a higher threshold λθ on the
quality of an acceptably high yielding patch, the optimal
time to arrive in such a patch increases (Fig. 5F). More-
over, the optimal threshold θ decreases, as more time
must be spent in patches to properly discriminate a high
yielding patch, as these become rarer in the prior as λθ
increases. In connection with the binary environment,
increasing λθ corresponds to making high patches more
discriminable but also more rare.

Our analysis of patch departure strategies in the con-
text of non-depleting patches reveals a number of consis-
tent trends across patch type counts. First, the optimal
time to arrive and remain in the highest yielding patch
decreases as the high patch discrimability increases and
as high patches become more common. Second, in en-
vironments with more than two patch types, the most
important parameters in determining the time to find
the highest yielding patch are those related to the high-
est and second highest yielding patch types. To most
efficiently find the high patch, it is sufficient to com-
pute LLRs corresponding to the first two or three patch
types. In this regard, we expect that reasonably effective
strategies for foraging environments with a continuum of
patch types could be generated using particle filters that
only compute likelihoods over a finite sample of possible
patch types [56]. Strategies for non-depleting environ-
ments involve minimizing the time to find a high yielding
patch. In depleting environments, the forager eventually
must leave any patch it arrives in, as food sources are
exhausted. We study such strategies in the next section.

IV. DEPLETION- VS. UNCERTAINTY-DRIVEN
DECISIONS IN DEPLETING ENVIRONMENTS

Foraging animals deplete resources as they use
them [57, 58]. This is accounted for in the most gen-
eral form of the foraging agent’s belief in Eq. (1), and
thus far we have analyzed idealized versions of the model
that neglect this. To understand the impact of depletion
on the agent’s belief and strategy, we will focus here on
simple cases: (a) homogeneous environments in which all
patches are the same and the forager knows the initial ar-
rival rate λ0 a priori; (b) binary environments in which
the forager knows there are two types of patches, and
may or may not have to infer which of the two they are
currently foraging in while they deplete it; and (c) envi-
ronments with a few patches in which there is a memory
of depletion from previous patch visits.

A. Homogeneous environments

We start by considering an agent foraging in an envi-
ronment in which all patches begin with the same den-
sity of food, so the arrival rate in each is initially λ0. As
they forage, the arrival rate λ(t) = λ0 −K(t)ρ decreases
in equal increments with each food encounter (Fig. 6A).
We assume the agent perfectly knows this arrival rate as
well as the amount of time it has been foraging, and will
use this information to determine a strategy for depart-
ing the patch. In keeping with the simplicity of the space
of possible strategies discussed before, we will assume the
forager departs the patch when λ(t) (or analogously the
density of food in the patch) falls below some threshold
λθ.

This problem can be framed by simply computing the
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mean food intake rate for a given strategy parameterized
by λθ. Assuming λθ is an integer multiple of ρ, we can
compute directly the number of chunks consumed before
departure mθ ≡ K(T (λθ)) := (λ0− λθ)/ρ, and the mean
time to depart T̄ (λθ). Linearity of expectations allows us
to compute the mean departure time as the sum of mean
exponential waiting times between food encounters

T̄ (λθ) =

mθ∑
j=1

1

λ0 − (j − 1)ρ
=

1

ρ

mθ∑
j=1

1

m0 − (j − 1)

=
Hm0

−Hm0−mθ
ρ

,

where Hn is the nth harmonic number. Thus, we com-
pute the long term reward rate given λθ as

Rλθ =
m0ρ− λθ

Hm0
−Hλθ/ρ + ρτ

. (20)

There is an interior optimum mθ that maximizes long
term food consumption rate (Fig. 6B,C). For low initial
rate λ0 and decrement ρ, the best strategy is to remain
in a patch until all food is consumed, but as λ0 and ρ are
increased, the optima occur roughly where Rλθ ≡ λθ as
in the marginal value theorem (MVT).

To analyze this observation further, we can approxi-
mate optima in the limit of plentiful patches (m0 � 1),
such that Hn can be estimated by the large n expansion

Hn = log n+ γ +O(1/n), (21)

where γ = 0.57721566... (the Euler–Mascheroni con-
stant). Using this, a first approximation yields

Rλθ ≈ m0ρ− λθ
log(ρm0)− log λθ + ρτ

. (22)

In this limit, we can explicitly show the MVT is satisfied,
Rλθ ≡ λθ, and the observer departs the patch when the
the arrival rate of food in the patch matches their average
environment-wide food arrival rate. To show this, note
that Rλθ in Eq. (22) has derivative

dRλθ

dλθ
=
−(log(ρm0)− log λθ + τ/ρ) + (m0ρ− λθ)/λθ

(log(ρm0)− log λθ + ρτ)2
,

which is increasing at λθ = ρ:

dRλθ

dλθ

∣∣∣∣
λθ=ρ

=
(m0 − 1)− (log(m0) + τ/ρ)

(logm0 + ρτ)2
> 0,

since m0 � 1, and decreasing at λθ = ρm0 = λ0:

dRλθ

dλθ

∣∣∣∣
λθ=λ0

= − 1

ρτ
< 0.

In between lies a critical point satisfying

m0ρ− λθ
λθ

= log
ρm0

λθ
+ ρτ, (23)

which is precisely the equation recovered when setting
Rλθ ≡ λθ in Eq. (22), implying the critical point of Rλθ

occurs where Rλθ ≡ λθ as in the MVT.
Alternatively, for small m0 (few chunks of food per

patch), computing the harmonic numbers in Eq. (20) is
straightforward, so we can directly compare the mean
rate Rλθ for all possible values of λθ. For instance, when
m0 = 2, we can choose from λθ ∈ {0, ρ} as the departure
threshold, corresponding to maximizing

Rλθ ∈
{

4ρ

3 + 2ρτ
,

2ρ

1 + 2ρτ

}
=
{
Rλθ=0, Rλθ=ρ

}
.

With this, the low threshold should be chosen when
ρ > 1/(2τ), or when energy gained from food chunks
is larger than half the transit rate between patches.
At ρ = 1/(2τ), the forager should leave after a single

chunk is consumed, yielding Ropt = ρ = λopt
θ (as in

the MVT). Similar results can be computed in the cases
m0 = 3, 4, 5, ... using explicit computation of the har-
monic numbers Hn. We expect these results to generalize
to arbitrary m0 as evidenced by the small m0 case and
our large m0 asymptotics.

Overall this suggests that for short transit times τ or
small food chunk sizes ρ, and ideal observer will depart
patches more quickly than when transit times are long τ
or food chunks have a higher quality ρ. This is consistent
with classic models of continuous consumption as in the
MVT, but here we have provided a detailed analysis of
the case of discretized and random food encounters. The
primary reason for a mismatch with the MVT arises due
to the discreteness of the food availability and arrival
rate. We show in binary environments, when uncertainty
plays a role in patch leaving decisions, there are nontrivial
deviations from the MVT due to the forager not precisely
knowing the food arrival rate of their current patch.

B. Binary environments

Next, we consider binary depleting environments in
which the observer must both infer the type of patch
(high or low) and track its depletion. We focus on strate-
gies in which the observer departs the patch when the
mean estimate of the arrival rate λ̃(t) falls below a thresh-
old λθ. To understand this most general case, we begin
by discussing two simplified cases: (a) the case in which
the patch type is known on arrival, and (b) the case in
which the low yielding patch is empty (mL

0 = 0).
Depletion-dominated regime. One way of contextual-

izing the case of known patch types is that of depletion-
dominated decisions. These types of decisions occur if the
observer stays in a patch till they have determined the
patch type to high certainty. To idealize this situation,
assume the observer arrives in a patch and immediately
knows the patch type λj (j ∈ {H,L}) in which they re-
side. Moreover, assume they leverage a strategy in which
they depart the patch as soon as the arrival rate falls be-
low some level λjθ. In this case, there are two thresholds
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to tune for each of the patch types. Following our calcu-
lations from the homogeneous case, the time to depart a
patch of type j is

T̄j(λθ) =
Hmj0

−Hmj0−m
j
θ

ρ
,

where mj
0 is the initial food count in patches of type j

and mj
θ is the threshold level of food to consume before

departing. As such, the long term reward rate is

Rλ
H,L
θ =

pH(mH
0 ρ− λHθ ) + pL(mL

0 ρ− λLθ )

pH(HmH0
−HλHθ /ρ

) + pL(HmL0
−HλLθ /ρ

) + ρτ
,

(24)

maximized by setting λHθ = λLθ ≈ Rλ
H,L
θ (Fig. 6D). We

show now that this follows the MVT.
In large mj

0 limit, the harmonic numbers are approxi-
mated by Eq. (21), and Eq. (24) becomes

Rλ
H,L
θ ≈ pH(mH

0 ρ− λHθ ) + pL(mL
0 ρ− λLθ )

pH T̃H(λHθ ) + pLT̃L(λLθ ) + ρτ
, (25)

where T̃j(λ
j
θ) = log(ρmj

0) − log λjθ and the critical point

equations for each partial derivative R
λH,Lθ

λjθ
= 0 imply

pH(mH
0 − λHθ ) + pL(mL

0 ρ− λLθ ) = λjθ
[
pH(log(ρmH

0 )

− log λHθ ) + pL(log(ρmL
0 )− log λLθ ) + ρτ

]
, (26)

which can be rewritten as Rλ
H,L
θ = λjθ (j = H,L), imply-

ing the observer should depart a patch when the arrival
rate equals the mean rate of food arrival for the environ-
ment (MVT). As in the homogeneous depleting environ-
ment, obtaining the prediction of the MVT relies on the
observer knowing the current food arrival rate. However,
as we will show, the optimal strategy deviates from the
MVT when there is uncertainty concerning the present
food arrival rate in the patch.
Empty low patch. Before addressing the general case

of a binary environment with initially unknown patch
types, we study a simple case in which the forager does
not know the patch type they are in ahead of time but
where the statistics of patch departures are still explicitly
calculable: when the low yielding patch is empty.

The simplest case is that in which some patches are
empty (mL

0 = 0) and others have a single chunk of food
(mH

0 = 1), as introduced by [36] but not analyzed in de-
tail. Clearly, when a forager encounters a chunk of food
they should leave the patch, since there is no food left
thereafter. How long should they wait until departing a
patch if food has yet to be encountered? This amounts to
optimizing the waiting time Tθ till departure (or equiva-
lently setting a threshold mean estimated arrival rate λθ
at which they depart). Each patch visit thus falls into
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one of three categories: (a) visits to empty (low) patches
lasting time Tθ; (b) visits to high patches resulting in
no food lasting time Tθ; and (c) visits to high patches
resulting in one food chunk lasting time t < Tθ.

To determine an optimal strategy, we need only com-
pute statistics for case (c). Since the food arrival rate in
a high patch is ρ, the probability of encountering food
when waiting a time Tθ is 1− πθ = 1− e−ρTθ , the mean
time to wait is

T̄ θH =
ρ
∫ Tθ

0
te−ρtdt

1− e−ρTθ
=

1− (ρTθ + 1)e−ρTθ

ρ(1− e−ρTθ )
,

and the rate of consumption of a given strategy is

Rθ =
pH(1− πθ)

pH(πθTθ + (1− πθ)T̄ θH) + pLTθ + τ
,

which we can maximize by finding the critical point of Rθ

in Tθ. As pH is increased and as ρ is decreased, the opti-
mal Tθ = Tmax

θ increases (Fig. 6E). When high yielding
patches are more frequent (higher pH), one should stay
in a patch longer, since they are more likely to encounter
food. When the rate of chunk discovery ρ is smaller, one
should expect to wait longer to encounter food in a high
patch, so the wait time should be increased.

Note, the observer does not leave the initially empty
patches immediately, so their strategy (even if optimally
tuned) does not agree with the MVT due to the ob-
server’s uncertainty about each patch’s yield rate.

We also analyze the case of an empty low patch and an
arbitrary number of food chunks m0 in the high patch.
Here, the observer should apply a hybrid strategy: Wait
a finite time Tθ to depart if no food is encountered, but if
food is encountered before t = Tθ, consume food until the
arrival rate drops to λθ = (m0−mθ)ρ. This strategy dis-
tinguishes two types of patch leaving decisions arising in
uncertain and depleting environments. Decisions may be
uncertainty-dominated, where the observer may depart
a patch early, believing they are in a low-yielding patch.
Alternatively, decisions may be depletion-dominated, af-
ter the observer is nearly certain of they patch type they
are in and has depleted it.

To optimally parameterize the departure strategy, we
again compute the probability of departing the high
patch early πθ = e−m0ρTθ (at time Tθ). Assuming the
observer remains in the patch, it takes a time

T̄ θH =
1− (m0ρTθ + 1)e−m0ρTθ

m0ρ(1− e−m0ρTθ )

to consume the first chunk of food and then depart im-
mediately (T (λθ) = 0) if λθ = λ0 − ρ (as in the previous
case). Otherwise, it will take an additional time

T̄ (λθ) =

mθ∑
j=2

1

λ0 − (j − 1)ρ
=

1

ρ

mθ−1∑
j=1

1

m0 − j

=
Hm0−1 −Hm0−mθ

ρ
.

At each patch then, the observer either obtains no food
and departs after time Tθ or obtains mθ = m0 − λθ/ρ
chunks and departs on average after time T̄ θH + T (λθ).
The probability of the latter is pH(1 − πθ), and assum-
ing m0 � 1, we can approximate Hm0−1 − Hm0−mθ ≈
log(m0−1)− log(m0−mθ), so the food consumption rate
is approximated by the a continuous function

R(Tθ, λθ) ≈
pH(1− πθ)(m0ρ− λθ)

pθ(T̄ (λθ) + T̄ θH) + (1− pθ)ρTθ + ρτ
,

where pθ = pH(1−πθ) and T̄ (λθ) = log(ρm0−ρ)−log λθ.
Reward rate is maximized using a waiting time Tθ that
is fairly insensitive to pH , whereas the threshold λθ is
sensitive to pH (Fig. 6F). When high yielding patches
become more common, the forager need not deplete them
as much, since the next patch they visit is likely to be
high yielding.

Many food chunks. Lastly, we examine general binary
depleting environments in which mH

0 > mL
0 are arbitrary

integers, so the belief y(t) = log P (λH−K(t)ρ|x(t))
P (λL−K(t)ρ|x(t)) evolves

according to Eq. (4). In line with our previous analy-
sis, the observer estimates the current arrival rate of the
patch from this belief,

λ̃(t) =
λH + e−yλL

1 + e−y
− ρK(t), (27)

and departs the patch when λ̃(t) ≤ λθ. As before, we are
concerned with tuning the threshold λθ so the long term
reward rate

Rλθ =
pHm̄H + pLm̄L

pH T̄H + pLT̄L + τ

is maximized. Unlike the non-depleting case, we cannot
frame and explicitly solve a MFPT problem to deter-
mine the mean times spent T̄H and T̄L and number of
food chunks consumed m̄H and m̄L in the high and low
patches. However, we can compute these quantities via
Monte Carlo sampling. There is an internal optimum
λopt
θ that maximizes the reward rate Rλθ across the en-

vironment, which deviates only slightly when little food
is available (Fig. 7A) and is well matched in the case of
high food availability (Fig. 7B) to a forager that knows
the patch type upon patch arrival (compare black/blue
curves). This suggests the forager typically learns the
patch type before departing in environments with suffi-
cient food, so their departure strategy will converge to
that of an observer who already knows the patch type.

We analyzed this trend by comparing departure times
of observers that initially know their current patch type
to those that do not (Fig. 7C). Indeed, foragers in sparser
environments (lower average initial food amount m̄0 =
(m̄H

0 + m̄L
0 )/2) stay in low patches too long (blue curve)

and leave high patches too soon (red curve) in compari-
son to observers that immediately know their patch type.
This is due to their uncertainty about their current patch
before and at the time of departure (grey curve). On the
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other hand, in more plentiful environments, foragers ac-
cumulate enough evidence about the current patch that
their departure times resemble those of observers that
know their patch type, recapitulating the MVT.

Uncertainty thus drives deviations from the MVT. For-
agers that exit patches before fully learning their type
will typically understay (overstay) high (low) patches.
Key to these uncertainty-driven decisions is an environ-
ment in which high/low patches are different enough to
warrant different strategies, but similar enough as to not
be immediately distinguishable. We now extend our anal-
ysis to the case of environments small enough so that for-
agers eventually return to previously depleted patches.

C. Returning to a previously depleted patch

Assuming foragers do not return to previously depleted
patches is a reasonable approximation in large environ-
ments, since there is a low probability of the observer
returning to a previously visited patch if drawing ran-
domly from their environment. However, in small en-
vironments, past patch depletion impacts the value of
future patch visits sooner (Fig. 8A). We briefly analyze
this case now, identifying strategies that minimize the
time to fully deplete the environment before departing
for another environment.

Single chunk-two patch environment. First, consider
the simplest nontrivial case, a two patch environment
in which there is a single chunk of food (mH

0 = 1 so
λH = ρ initially and mL

0 = 0). When the forager departs
one patch, they journey to the other patch with transit
time τ . We seek a waiting time strategy similar to that
developed for depleting patches (Fig. 8B). The observer
waits a time Tθ in their current patch before leaving to

the other patch (if they do not encounter a food chunk).
Note, this differs from thresholding the LLR (y = θ)
since the first patch visit would be shorter in that case,
but this approach allows an explicit approximation of
the optimal strategy. If the forager is in the high patch,
they encounter the food chunk with probability 1−πθ =
1 − e−λHTθ . In the low patch, they always depart after
a time Tθ. Thus, the mean time to encounter the chunk
in the environment is given by: (a) the time spent in the
high patch visit on which the chunk is discovered plus (b)
the initial time spent in the low patch when that is the
first patch visited (scaled by that probability 1/2) plus
(c) the other time spent visiting patches and not finding
the chunk:

T̄find(Tθ;λH) =
1− (λHTθ + 1)e−λHTθ

λH(1− e−λHTθ )
+
Tθ + τ

2

+ 2(Tθ + τ)(1− πθ)
∞∑
j=0

jπjθ

=
λHTθ + 3λHτ − 2 + (2 + λHTθ + λHτ)eλHTθ

2λH(eλHTθ − 1)
.

(28)

This is minimized by taking Tθ = T opt
θ such that

e2λHT
opt
θ − 2(λHT

opt
θ + 2λHτ)eλHT

opt
θ − 1 = 0,

For large eλHT
opt
θ , we approximate the critical point equa-

tion as eλHT
opt
θ ≈ 2λHT

opt
θ + 4λHτ , which has a compact

asymptotic expansion:

T opt
θ ≈ 1

2λH

[
−2W−1

(
−e−2λHτ

2

)
− 4λHτ

]
≈ 1

λH
log(4λHτ + 2 log 2), (29)
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where W−1 is the −1 branch of the Lambert W function.
This shows that the optimal waiting time scales inversely
with the initial arrival rate λH of the high patch. The
minimal time to find the chunk is approximated by sub-
stituting Eq. (29) into Eq. (28). Both quantities decrease
with ρ (Fig. 8C), owing to the fact that environments
with higher discovery rates λH = ρ require less time in
the high patch for the observer to find the food chunk.
When the detection rate ρ is small, the optimal switch
time T opt

θ (i.e. the decision strategy) is more sensitive to
small changes in ρ.

General binary environment. A similar approach can
be used in binary environments with an arbitrary ini-
tial number mH

0 > mL
0 of food chunks in the high and

low patch. To minimize the number of required patch
switches, the forager should first clear mL

0 chunks of food
from the starting patch and then wait until the observer’s

LLR y = log P (λH(t)|x(t)))
P (λL(t)|x(t)) (computed from Eq. (4)) falls

below the threshold θ < log pH
1−pH . After the first couple

of patch switches, the time spent in a patch if food is not
discovered will be Tθ = −2θ/[ρ(mH

0 −mL
0 )]. While an ex-

plicit formula for T̄clear(θ) can be obtained by marginal-
ization, the resulting expressions are lengthy and do not
provide insight into the trends underlying the optimal
strategy. Thus, we use Monte Carlo sampling to deter-
mine how the optimal θ varies with the environmental

parameters.

As the amount of food in the environment increases,
the time to clear it increases, but only slightly (Fig. 8D).
Since the observer has more evidence about the kind of
patch they are in after consuming mL

0 chunks as mL
0

grows, they can more quickly find the (mL
0 + 1)th chunk.

Moreover, the patches become more discriminable as the
difference mH

0 −mL
0 increases, such that the forager can

afford more certainty before switching patches, meaning
that the optimal θopt is lower. Increased discriminability
also results from increasing the rate of chunk encounters
ρ (Fig. 8E). With increased discriminability, both the
optimal threshold θopt and mean time to clear the envi-
ronment T̄ opt

clear decrease owing to the forager’s ability to
discover chunks more quickly.

More patches. We expect it is possible to extend the
above strategy to the case of N environmental patches.
However, the dimensionality of the optimization problem
will grow quickly, so we save a detailed analysis of this
case for future work.

Nonetheless, we can easily identify a strategy for min-
imizing the time to clear the environment in the case
of N patches assuming the observer knows the patch
type upon arrival. If patch j has mj

0 chunks of food
initially, the forager should still aim to minimize the to-
tal time spent in transit between patches. To do this,

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 24, 2020. . https://doi.org/10.1101/2020.04.22.055558doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.22.055558


17

they should fully clear each patch before moving on to
the next (Fig. 8F). Assuming the forager always chooses
an unexplored patch when departing an emptied one, the
minimal mean time to clear the environment of food will
be

T̄ opt
clear = (N − 1)τ +

1

ρ

N∑
j=1

Hmj0
= N

[
τ + H̄/ρ

]
− τ,

where the time to clear the jth patch is Hmj0
/ρ as in

Eq. (20) for homogeneous depleting environments and
H̄/ρ is the mean clearance time of patches across the
environment. Thus, the time to clear the environment
scales linearly with the number of patches N (assuming
the mean patch clearance time is unchanged by N).

Were the forager to use another strategy, they would
return to each patch multiple times to clear them. This
would mean the transit contribution would be T̄transit >
(N − 1)τ , and the total time to clear patch j would be

no less than Hmj0
/ρ, so T̄clear > T̄ opt

clear.

There are a number of extensions to this case of a fully
depleting environment. Since the observer must consider
both transit times between patches and patch yields that
depend on visit history, this is a qualitatively different
problem from the multi-armed bandit (MAB) problem.
Typically, bandit problems do not involve depletion or
action-dependent changes in the yield of arms [59, 60].
Our setup thus provides a rich class of optimal switching
strategy problems which warrant future investigation.

V. LEARNING THE DISTRIBUTION OF
PATCH TYPES

Our analysis so far has assumed the forager has com-
plete knowledge of the distribution of patch arrival rates
in the environment. However, typically animals arrive in
a new environment with uncertainty about the quality of
patches they will encounter [28, 61–63]. Thus, animals
should use information from patch encounters to estimate
statistics of patch yields in the environment. In our se-
quential updating model, this can be implemented with a
higher level of inference in the model (Fig. 1B) whereby
the observer refines a prior over the initial arrival rate λ0

using the past N patch visits p(λ0|x1:N (t)). We assume
each new patch a forager enters has not been previously
depleted.

Here, we measure learning performance using the time
it takes to refine the mean squared error (MSE) to some
threshold. Interestingly, we find that foragers in deplet-
ing environments learn the initial rate of arrival faster
than those in non-depleting environments.

A. Homogeneous environment

A homogeneous environment is described by a single
parameter λ0, the initial arrival rate of food within all

patches. We will start by considering the simple non-
depletion case, and then move to consider how learning
occurs in depleting environments. This will illuminate
the differences between learning in these two cases before
moving to binary environments.
Non-depleting environments. In a non-depleting envi-

ronment, an agent intending to maximize the speed they
learn the patch arrival rate of food λ0 should remain in
a single patch indefinitely. In this case, the rate learning
process is equivalent to learning the rate of a sequence
of exponentially distributed waiting times. Given a se-

quence of food encounters x(t) =
∑K(t)
j=1 δ(t − tj), the

observer uses the time t, count K(t), and initial prior
p0(λ0) to estimate the rate λ0 so Bayes rule states

p(λ0|x(t)) =
1

p(K(t))
p(K(t)|λ0)p0(λ0)

∝ (λ0t)
K(t)e−λ0tp0(λ0), (30)

and the maximum likelihood estimate (MLE) of the rate
λ∗0 is given by the implicit equation

tλ∗0 = K(t) + λ∗0p
′
0(λ∗0)/p0(λ∗0).

For a flat, improper prior p0(λ0) ≡ 1, the MLE is λ∗0 =
K(t)/t, and for an exponential prior p0(λ0) = ae−aλ0 ,
the MLE is λ∗0 = K(t)/(t + a). In either case, the MLE
is consistent in the limit as t→∞:

lim
t→∞

λ∗0 = lim
t→∞

K(t)

t
+ lim
t→∞

λ∗0p
′
0(λ∗0)/p0(λ∗0)

t
= λtrue

0 .

Each food encounter tends to narrow the distribution
p(λ0|x(t)) and the MLE tends to move toward the true
arrival rate λtrue

0 (Fig. 9A). One measure of learning is
the rate of decrease of the normalized MSE. Since the
estimator is consistent, we expect

MSE(t;λtrue
0 ) =

∫ ∞
0

(λ0 − λtrue
0 )2

(λtrue
0 )2

p(λ0|x(t))dλ0

to decrease on average over time. That is,
d
dt

¯MSE(λtrue
0 , t) < 0 where

¯MSE(t;λtrue
0 ) =

∫ ∞
0

(λ0 − λtrue
0 )2

(λtrue
0 )2

p̄(λ0|x(t))dλ0, (31)

and where the average is over realizations of arrival times
p(K(t)|λtrue

0 ), leading to

p̄(λ0|x(t)) =
∞∑
K=0

(λtrue
0 t)K(λ0t)

Ke−λ
true
0 te−λ0tp0(λ0)

(K!)2p(K)
.

For a flat, improper prior p0(λ0) ≡ 1,

p(λ0|K(t)) =
t

K!
(λt0)Ke−λ0t,

so

p̄(λ0|x(t)) = te−(λtrue
0 +λ0)t

∞∑
K=0

(λtrue
0 λ0t

2)K

(K!)2
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true arrival rate: results for a non-depleting environment. Average mean squared error (MSE), given by Eq. (31), decreases
more rapidly for higher λtrue

0 . B. Posterior pmf p(λ0|x(t)) peaks more rapidly in depleting environments due to exclusion of
rates λ0 < K(t)ρ. C. Mean time to learn T̄learn to within MSE< eθ is smallest when chunks consumed equals the total number
in the patch mθ = m0 = 10 (left), so the best policy (right) is to exit when MLE of total number of chunks is consumed
(mopt

θ = MLE(m0)). Here ρ = 0.1. Note lower T̄learn than in non-depleting case. D. In binary environments, posterior pdf
p(λH , λL|x(t)) is first refined over the first patch type visited (λH = 2 here), then over the second patch type visited (λL = 1),
and eventually reaches a peak near true (λH , λL). E. Thus, eventually an accurate MLE is obtained for both patch types.
Departures every t = 100 time units. F,G. Learning is more rapid in depleting environments, because low arrival rates are
ruled out. Patches departed after MLE chunks consumed.

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 24, 2020. . https://doi.org/10.1101/2020.04.22.055558doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.22.055558


19

= tI0(2t
√
λ0λtrue

0 )e−(λtrue
0 +λ0)t (32)

≡ F (t, λ0, λ
true
0 ),

where I0(z) is the zeroth order modified Bessel function
of the first kind. Eq. (32) can thus be substituted into
Eq. (31) and integrated using quadrature to calculate the
ensemble mean of the MSE as a function of time:

¯MSE(t;λtrue
0 ) =

∫ ∞
0

(λ0 − λtrue
0 )2

(λtrue
0 )2

F (t, λ0, λ
true
0 )dλ0

=

∫ ∞
0

(x− 1)2F (s, x, 1)dx,

where we have made the changes of variables λtrue
0 x = λ0

and s = λtrue
0 t. This reveals that the rate of decay of the

normalized mean MSE increases linearly in λtrue
0 , such

that the time tθ to obtain a threshold level of mean ac-
curacy scales inversely with λtrue

0 (Fig. 9A bottom inset).
Thus, the observer learns the arrival rate of the environ-
ment more quickly in higher rate environments.

Note, there are a number of ways to modify this basic
setup. First, the forager may have a more informed prior
over λ0 based on experience with previous environments.
In this case the updating process is the same and only the
prior p0(λ0) changes. Had we considered an observer that
moves between patches, the only difference would be that
the observer gains no information about the arrival rate
while in transit but carries their posterior forward upon
arrival in the new patch. We now extend this framework
to consider depleting environments.

Depleting environments. In depleting environments,
the forager’s belief update changes in two key ways.
First, to continue learning, they must eventually depart
their current patch and continue observing in a new patch
whose arrival rate is reset to the true initial arrival rate
λ0. Second, each chunk encounter reduces the arrival
rate within the patch, so the space of possible arrival
rates must be adjusted. In particular, all arrival rates
λ0 < K(t)ρ are eliminated from the posterior, as they
are impossible given K(t) chunks have arrived. With
these facts in mind, we examine how the time to learn
the arrival rate depends on patch exit strategy and true
arrival rate. Following depleting foraging strategies, we
assume the departure threshold on the number of chunks
consumed depends on the MLE of the arrival rate.

To determine an efficient strategy for inferring the ar-
rival rate λ0, we first determine the optimal departure
chunk count given a specific true λtrue

0 . We then examine
how an observer who chooses this chunk count threshold
based on their MLE limits their time to obtain a given
desired MSE. As before, the posterior over the initial ar-
rival rate λ0 can be calculated using Bayes rule, so within
a single patch

p(λ0|x(t)) =
1

p(K(t))
p(K(t)|λ0)p0(λ0) ∝ m0!e−λ0tp0(λ0)

(m0 −K(t))!
,

for λ0 ≥ K(t)ρ, where m0 = λ0/ρ is the initial count as-
sociated with the initial rate λ0. Each food encounter

generally narrows the distribution p(λ0|x(t)) and de-
creases the number of chunks in the patch. Given N
patch visits, the forager can accumulate evidence from
each visit as a separate term in the posterior product:

p(λ0|x(t)) ∝
N∏
j=1

m0!e−λ0tj

(m0 −Kj(tj))!
· p0(λ0), (33)

where tj is the time spent in the jth patch and Kj(tj) is
the number of chunks encountered (Fig. 9B top).

Averages from simulations show the best strategy for
minimizing the time to learn the true rate λtrue

0 is to
depart the patch when all the chunks predicted by the
observer’s current MLE are consumed (Fig. 9C left). We
see evidence of this, for instance, when attempting to in-
fer λtrue

0 = 1 (when ρ = 0.1 and m0 = 10). The forager’s
best strategy for minimizing the time to learn this rate
is to consume all 10 chunks of food in a patch before de-
parting. Thus, an effective strategy for rapidly learning
the initial arrival rate λ0 across environments is to leave
a patch once the number of chunks consumed is greater
than or equal to the MLE for the initial chunk count
m0 (mopt

θ = MLE(m0)). Using this strategy, the time to
learn the rate decreases as the true rate increases (Fig. 9C
right) in line with findings in the non-depleting case, but
much faster due to exclusion effects of depletion.

B. Binary environments

A forager learning two patch arrival rates λH > λL
clearly must visit more than one patch, and each succes-
sive patch visit increases the likelihood that both patch
types have been visited. As before, we start by consid-
ering the non-depleting environment in which learning is
slower, and then move to studying the inference process
in a depleting environment.
Non-depleting environments. In a single patch (j),

given a flat prior (p(λ0) constant), a sequence of food
encounters xj(t) yields the posterior

p(λ0|xj) ∝ (λ0tj)
Kj(tj)e−λ0tj ≡ Q(λ0; tj ,Kj),

over the possible arrival rate λ0 in patch j, where tj is
the time spent and Kj(tj) is the number of chunks en-
countered in patch j (as in Eq. (30)).

Given N patch visits and a flat prior (p(λH , λL) con-
stant) over the rates, the forager combines information
across patches by conditioning on the probability they
are in a high/low patch. The posterior for the arrival
rates λk (k = H,L) given patch visits j = 1, ..., N is
then:

p(λH , λL|x(t)) ∝
N∏
j=1

p(xj(tj)|λH , λL), λH > λL,

∝
N∏
j=1

[pHQ(λH ; tj ,Kj) + pLQ(λL; tj ,Kj)] ,
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where pk ≡ p(λj = λk) is assumed known to the observer.
The posterior updating is thus refined based on the

arrival rate of the current patch (about λtrue
H when in a

high patch and about λtrue
L when in a low patch: Fig. 9D).

This process continues as the agent visits each type of
patch, as seen in time series of the MLE, whereby the
estimate of the arrival rate for the patch not being visited
remains fairly constant, while that of the visited patch
changes (Fig. 9E).

Depleting environments. Lastly, we derive the infer-
ence strategy for learning in binary environments with
depleting patches. Learning the arrival rate of a single
patch is given by Eq. (33), and using a flat prior we have

p(λ0|xj(t)) ∝
(λ0/ρ)!

(λ0/ρ−Kj)!
e−λ0tj ≡ Qjρ(λ0),

where tj is time spent and Kj is the number of chunks
encountered in patch j. Conditioning on the patch type
being visited yields the posterior for the initial arrival
rates λk0 (k = H,L) given patch visits j = 1, 2, ..., N :

p(λH0 , λ
L
0 |x(t)) ∝

N∏
j=1

p(xj(tj)|λH0 , λL0 ), λH0 > λL0 ,

∝
N∏
j=1

[
pHQ

j
ρ(λH) + pLQ

j
ρ(λL)

]
,

where pk ≡ p(λj0 = λk0).
As in the non-depleting environment, the posterior is

first refined over the first patch type visited (λH = 2
in Fig. 9F). However, as opposed to the homogeneous
environment, low rates λL < Kρ are never entirely ruled
out, since there is always a possibility the forager is in
the high patch. As such, the MLE for the high patch is
refined more quickly while the low patch MLE continues
to jump around (Fig. 9G).

We could also consider models that learn the deplet-
ing increment ρ or distribution of transit times τ us-
ing a similar Bayesian sequential updating framework.
Presumably, natural foragers would learn environmen-
tal parameters through related evidence accumulation
processes. Our work here demonstrates that sequential
Bayesian inference affords a powerful framework for un-
derstanding how a forager could learn hierarchically us-
ing a fairly compact model. A key finding of the above
analysis is that depletion itself provides additional infor-
mation about the arrival rate, allowing the observer to
refine their estimate more rapidly than in non-depleting
environments.

VI. DISCUSSION

A. Summary

Patch leaving decisions are an essential component of
foraging. Our model uses principles of probabilistic in-
ference to establish a normative theory of patch leaving

decisions, as well as a framework for learning about re-
source availability in the environment.

The model yields several key takeaways concerning op-
timal decision strategies in a variety of patch foraging
contexts (see Fig. 10 for an overview and Table I for
details). In the idealized case in which foraging does
not deplete patches, the optimal strategy is for a for-
ager to minimize their time to find and remain in the
highest yielding patch in the environment. This is ac-
complished by triggering patch leaving decisions when
the log-likelihood ratio for the probability of high return
versus other patches falls below a threshold. When a
forager depletes patches, we found that across a broad
range of environmental parameters the best strategy for
maximizing the environmental reward rate is to depart
a patch when the in-patch reward rate matches the av-
erage return rate of the environment, i.e. corresponding
to the marginal value theorm (MVT). However, if there
is high uncertainty about the patch type, the forager
will stay longer in low yield patches and shorter in high
yield patches than predicted by the MVT. When a for-
ager fully depletes their environment, an optimal strat-
egy minimizes the number of transits between patches in
order to deplete the environment as quickly as possible.
Lastly, we found an observer that learns the rate of food
arrival within patches learns more quickly in depleting
than non-depleting environments environments.

Throughout the study, we compute and vary metrics
that have parallels used in systems neuroscience such as
reaction times and discriminability. We solved the model
equations via a combination of first passage time meth-
ods for stochastic processes along with Monte Carlo sam-
pling of jump processes corresponding to foragers’ beliefs.
Since the contexts analyzed in our study (Fig. 10; Ta-
ble I) can be realized experimentally, our model provides
a framework for the formal quantitative analysis of be-
havior in patch foraging experiments.

B. Relation to other work

Animals often approximate Bayesian foraging. We
have treated patch leaving as a statistical inference prob-
lem within a Bayesian framework, assuming the animal
has knowledge of the transit time between patches, the
impact of food depletion on the food arrival rate, and
(in the case without learning) the distribution of patch
arrival rates. Our theoretical treatment of patch leaving
decisions builds on previous Bayesian models of forag-
ing [34, 36–42], experimental studies that ask if animals
behave as Bayesians [43–49], and other experiments that
show how an animal’s prior knowledge about an environ-
ment modulates its foraging behavior [64–66]. For ex-
ample, bumblebees [32] and inca doves [67] adjust their
foraging strategies in response to the predictability of the
environment, as a Bayesian forager would, but other work
shows this is not a universal trend [68]. Patch leaving
decisions may deviate from Bayes optimality due to ani-
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FIG. 10. Summarized taxonomy of foraging strategies. See Table I for details. A. In non-depleting environments, an
ideal forager searches patches until finding and remaining in a high yielding patch. B. In environments with depleting patches,
an ideal forager depletes a patch and departs when reward arrival rate reaches a threshold. C. In fully depleting environments,
an ideal forager should fully deplete patches before departing in order to minimize the time to clear the environment.

mals becoming risk-averse in variable environments [69].
Apart from the behavioral significance of priors in guid-
ing animals’ foraging behavior, such cases can help us un-
derstand the types of probabilistic neural computations
performed in uncertain and dynamic environments.
Inferential decisions can validate the marginal
value theorem. The marginal value theorem
(MVT) [22] provides a baseline patch depature rule for
comparing optimal foraging to ecological behavior [12].
However, the MVT is limited in its applicability, as it
classically describes the case of continuous rewards where
the forager has perfect knowledge of resource availabil-
ity, and does not provide a mechanistic account of how
a forager reaches a decision to leave a patch. To ad-
dress these limitations, Davidson & El Hady [31] devel-
oped a generalized mechanistic model of patch leaving
decisions with parameters representing the discreteness
of reward arrival, belief noise, and environmental aver-
aging. In this model, patch leaving decisions are due to
a threshold crossing process by an accumulator variable.
Parameters can be adjusted to represent a wide range of
foraging strategies not limited to the MVT, and specifi-
cally addressing environmental uncertainty. This model
inspired our current work, which demonstrates that op-
timal patch leaving decisions involve evidence accumula-
tion. We have identified uncertainty in the current re-
ward rate as a key driver of deviations from the MVT.
Previous studies modeling patch departure under discrete
rewards [25] have formulated mechanistic descriptions of
departure decisions [20, 21, 26, 29], but none have ana-
lyzed such a broad range of task conditions to provide a
comparative study of strategies.
Patch foraging as modified multi-armed bandit.
Patch leaving behavior involves deciding when to leave
the current patch being harvested, noting that available
rewards in the next patch may be unknown; in the sim-
plest case departures lead to a random sample of the
subsequent patch from the environment. In contrast, the
multi-armed-bandit (MAB) task [70] assumes an agent
has some control over which patch (arm) is chosen next,

often does not consider patch depletion, and classically
ignores switching costs. However, patch leaving and the
MAB task can become similar in certain limits. For
instance, patch leaving that involves no depletion, zero
switching costs, and memory of past locations is some-
what similar to the classic MAB.

To illustrate the differences, consider an environment
with two patch types H and L, no depletion of patches,
no switching cost, and where the forager knows the patch
reward rates values λH and λL (treated in Figs. 2 & 3).
Within a patch, the forager uses its experience to decide
when to leave the current patch, since they may not know
the patch type on arrival. If the forager does not retain
memory of the locations of specific patches, then they
will randomly come upon the next patch of either type
H or L according to the statistics of the environment,
and must repeat the process of inferring the reward ar-
rival rate. Now consider a K-arm bandit where some
proportion have reward probability λH and some have
λL. At each step, the gambler chooses which of the K
arms to exploit, and continually updates its estimate of
which patches are H versus L, as the space of arms is
typically small enough to learn this well. Even with the
assumptions of no depletion and zero switching costs, as
formulated these are still different decision problems: to
formulate the MAB problem as a patch foraging problem,
the gambler would have a choice at each step between the
same arm or a randomly chosen different arm.

Regardless, considerations of switching costs, deple-
tion, and uncertain future rewards are central to patch
foraging and stay-or-go decisions, and related work with
the MAB has considered some of these cases. Switch-
ing costs were considered by [60, 71, 72], and including
these who generally led to remaining at the same arm
for longer, similar to patch foraging. The problem of de-
pleting rewards is related to the non-stationary bandit,
in the specific case where arm reward rates are choice
dependent [73, 74]. In a patch with depleting rewards,
the expected return changes in a specific and predictable
way, and therefore can be treated mathematically, as we
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Environment Decision strategy/solution Dependencies/Observations

Non-depleting patches
Objective: Minimize time to arrive and remain in highest yielding patch. Known: Food arrival rates of each patch type.

N -patch types

Depart patch when likelihood of being in
highest yielding patch falls below a threshold.
N = 2: See Eqs. (3) & (11) and Fig. 2B;
N = 3: See Eqs. (14) & (15) and Fig. 4B;
N > 3: See Eqs. (17) and Fig. 5B.

• Optimal strategy and arrival time depend on fraction of
low versus high yield patches and discriminability between
1st/2nd highest yield patches (Figs. 3-5).

Continuum of patch
types

Categorize patches as high or low yielding
and depart patch if likelihood of a high patch
is below threshold (See Eq. (19) and
Fig. 5D).

• Time to arrive and remain in high yielding patch is
non-monotonic in departure threshold, and much longer
when high patches are rare.

Depleting
Objective: Maximize mean food intake rate R over a long time (several patches). Known: Initial yield rates of each patch type.

1-patch type
Depart when arrival rate λ(t) falls to a
threshold value λθ.

• Matches MVT (Eqs. (22) & (23) and Fig. 6B) except when
there are very few chunks per patch (Fig. 6C) in which case
the forager should empty the patch.

2-patch types: patch
type known on arrival

Depart when current patch arrival rate λj(t)
reaches a threshold.

• Represents the ‘Depletion-dominated’ regime, which
recovers MVT (See Eqs. (25) & (26) and Fig. 6D).

2-patch types: empty
low yield patch

Wait a time Tθ, then depart patch if no food
is found. If encounter food at t < Tθ, then
use threshold on inferred yield rate to make
leaving decision (similar to single patch type
case)

• ‘Uncertainty-dominated’ regime deviates from MVT.
• Optimal wait time and departure threshold λθ increase
with prevalence of high yielding patch (Fig. 6E,F)

2-patch types: both
high and low patches
have food

Decision via threshold on current estimated

yield rate λ̃(t) (See Eq. (27)). Choose
optimal threshold λθ that maximizes long
term food intake rate.

• Optimal return differs from known case when there are few
food chunks per patch (Fig 7A), converges to known patch
case when there are many chunks per patch (Fig 7B).
• Forager stays in low patches too long, leaves high patches
too soon when there are few chunks per patch
(uncertainty-dominated regime, Fig 7C).

Returning to patches
Objective: Minimize time to harvest all food from the environment. Known: Yield rates of each patch type.

Patch type known on
arrival

Empty each patch completely before moving
to the next one.

• Time to clear environment increase linearly with number of
patches in environment (Fig. 8F).

2-patches: 1 chunk
Leave current patch if food not found within
waiting time of Tθ (search problem).

• Optimal waiting time decreases with discovery rate ρ
(Fig 8C) in contrast to case without returns (Fig. 6E).

2-patches: general case Consume mL0 chunks from first patch, then
threshold belief to decide patch departure.

•Time to clear environment depends weakly on chunk count
(Fig. 8D) and decreases slightly as chunk encounter rate
increases (Fig. 8E).

TABLE I. Detailed taxonomy of patch foraging strategies. Patch decision strategies depend on the environment, and
trends in observables differ for the foraging environments considered in the model. Environments considered include non-
depleting patches, depleting patches, and the case of returning to specific patches to fully deplete an environment (see also Fig
10). Columns describe important aspects of the optimal decision strategy for each case, along with key model results.

showed in Section IV. Limited/incomplete memory of the
return of each arm is related to the non-stationary ban-
dit, because non-stationarity of return means estimates
of the return of previously visited arms slowly becomes
more uncertain over time. Other MAB task designs con-
sider changing conditions: for example, after an abrupt
change in the environment (e.g. [75]), estimates of the
return from each arm can be ’reset’ [76]. A complete re-
set of the choice policy represents no memory of which
arm to choose. This is related to the fact that a for-
ager often has knowledge of only the reward rate of the
current patch - finding the next patch requires explo-
ration and possibly an uncertain amount of search costs.
Within these contexts, patch foraging is fairly well de-
scribed by a non-stationary bandit with (possibly uncer-
tain) switching costs, limited memory or discounting of
the choice policy of certain arms, and a specific form of
non-stationarity. As such, we see our work providing use-

ful insights about efficient strategies for non-stationary
MAB tasks.

Bayesian learning could be approximated by rein-
forcement learning. At best, animals approximate the
optimal learning processes we have described mathemat-
ically [61, 77, 78]. One such approximation is the relative
payoff sum (RPS)-learning rule whereby the probability
of choosing a patch is proportional to the relative payoff
that the respective patch has yielded so far [62], related
to a matching law identified in operant conditioning [79].
A reinforcement learning (RL) framework can also be ap-
plied to patch leaving decisions, as discussed by Kolling
and Adam [80]. These authors showed that while purely
model-free RL fails to describe common aspects of patch
leaving decisions, model-based predictions of expected
rewards may be used to decide when to leave a patch,
in conjunction with model-free RL that can be used to
evaluate the values of different decision strategies across
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patches.
In our theoretical treatment, we assume the forager

uses the correct model of in-patch return rates, consist-
ing of stochastic rewards with an underlying constant
rate (non-depleting environment) or decreasing rate (de-
pleting environment). Even if a Bayesian forager did
not know a priori whether patches were depleting or
not, or what the depletion increment was, a hierarchi-
cal Bayesian update could be used to learn this. In our
work, the forager uses a threshold θ on the LLR to make
patch leaving decisions in non-depleting environments,
or a threshold λθ on the inferred arrival rate to trigger
patch depatures in depleting environments. Although
we obtained explicit solutions for the optimal thresholds
θopt or λopt

θ by considering values that lead to maximal
return, we note that within the framework of [80], an
agent could use model-free RL to learn the optimal val-
ues of these parameters. More work needs to be done in
order to compare Bayesian mechanisms of learning to RL
in the context of patch foraging decisions.
History and memory effects in patch foraging.
Animals performing trained [81–83] and naturalistic be-
havior [84–86] make history-dependent decisions based
on the stimuli they have experienced and the responses
they have made. History-dependence is likely mediated
by both short and long term memory processes. Mem-
ory for food availability is crucial for efficient foraging,
for example in starlings [57, 87]. Movement and search
patterns of foraging animals are also governed by envi-
ronmental estimates from memory [88]. Our theoretical
treatment mostly accounts for memory by assuming the
forager retains knowledge of their patch’s statistics and
the statistics of the environment, as agents update their
patch type beliefs by sampling patch food resources.

C. Experimental applications: Behavior and
neuroscience

Experimental realizations of foraging behavior.
There is currently a surge of interest in systems neu-
roscience to study naturalistic behavior as opposed to
traditional experimental designs in which animals are
trained over long times to perform particular behavioral
tasks (‘trained behavior’). One important distinction be-
tween the type of foraging behavior we are studying here
and trained decision making tasks in perceptual deci-
sion making is that the former is continuous, without
a specific trial structure, while the latter have a (re-
peated) trial structure predetermined by experimenters.
The theoretical framework in this work will help exper-
imenters move from trial based behavior to continuous
behavior without the loss of quantitative rigor. Studying
behavior in this continuous paradigm offers important
advantages over trial based paradigms as it allows multi-
sensory integration to unfold, increases the fraction of
time the animal is engaged in a task, engages the animal’s
sensory-cognitive-motor loops activated by the environ-

ment’s natural statistics, and allows neural dynamics to
unfold over multiple timescales [89].

Although recent work has examined foraging tasks
within a systems neuroscience framework [90–93], there
remain many open questions related to how the brain
processes key aspects of foraging decisions. For example,
experiments with the “Self-control preparation,” where
an animal chooses between two choices, have significant
behavioral differences with those that have a sequential
foraging “patch preparation”, even though from an eco-
nomic standpoint, the setups are equivalent [94]. More-
over, many tasks do not allow the animal to move ex-
tensively in space, which is a crucial aspect of foraging.
For instance, when rats are required to physically move
to perform foraging, the observed behavior differs from
tasks that “simulate” foraging by presenting sequential
choices or that consider visual search [95].

Neural implementation of patch foraging deci-
sions. As we are aiming to provide a conceptual frame-
work for patch foraging experiments in systems neuro-
science, a crucial aim of such experiments is to map brain
circuits underlying patch foraging decisions. The behav-
ioral conceptual framework we have treated in this study
includes behavioral mechanisms underlying patch leaving
decisions in different types of environments. By exten-
sion, those behavioral mechanisms should map onto neu-
ral mechanisms. As in classic perceptual decision-making
tasks, sequential updating models provide key insights
into the types of neural computations one should expect
to see in subjects performing those decisions [50].

Fitting our behavioral model to both the behavioral
data and the neural data simultaneously [96] can unravel
a series of intricate neural computations underlying par-
ticular behavioral strategies. To date, only a few brain
areas have been shown to be involved in different as-
pects of foraging decisions: ventromedial prefrontal cor-
tex encodes values of well-defined options, and anterior
cingulate cortex encodes the average value of the foraging
environment and cost of foraging [97] or signals changes
in environmental context [98, 99]. Although experimen-
talists have traditionally targeted selected stereotypical
areas, the increased availability and versatility of large
scale recording techniques will enable future experiments
to map the global circuits underlying foraging decisions,
thus accessing a brain wide representation of intricate
behavioral strategies [100].

Comparative patch foraging behavior. Compara-
tive approaches, identifying similarities and differences
across species, are a key aspect of the behavioral ecology
of foraging [101–103]. Our model enables quantitative,
model-based comparisons of decisions strategies between
animals, which will improve our understanding of the as-
pects of evolution (e.g., selection pressure) shaping for-
aging behavior [11, 14]. Since neural circuits are shaped
by these pressures too, this opens novel avenues for com-
parative systems neuroscience and an evolutionary un-
derstanding of neural computations during foraging.

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 24, 2020. . https://doi.org/10.1101/2020.04.22.055558doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.22.055558


24

D. Model extensions

Our model forms the foundation for multiple avenues of
future theoretical study. One extension, discussed above,
concerns using reinforcement learning to tune the patch
leaving decision thresholds in the model. While we as-
sumed the agent learns the qualities of different patch
types, we fixed the transit time between patches; another
extension could focus on learning and decision making in
environments with distributed transit times. Such a fea-
ture could arise via spatial arrangements of patches, with
potentially correlated resource availabilities across adja-
cent patches [40, 104].

Effective search is integral to survival in nature [105],
and search behavior can give information on individual
decision strategies. For example, a recent study found
that rats can solve the stochastic travel-salesman prob-
lem using a nearest neighbour algorithm [106]. A similar
approach could ask how an animal’s search and naviga-
tion pattern interact with different patch leaving deci-
sions to create an effective foraging strategy.

Our framework has also developed strategies assuming
the forager utilizes constant thresholds on either the be-
lief or estimated arrival rate. However, it is well known
that in a variety of decision making contexts, optimal
strategies can involve time-dependent decision thresh-
olds [52, 53, 107, 108]. Typically, these results arise in
the context of multi-trial experiments in which the qual-
ity of evidence on each trial varies stochastically and is
initially unknown. In the non-depleting environments of
our study, the quality of evidence is fixed across patch vis-
its and beliefs are used to trigger departure decisions. As
such, models in this context fit the assumptions of classic,
constant threshold optimal policies. On the other hand,
in uncertain binary depleting environments, we have pro-
jected a higher-dimensional description of the patch value
to a single scalar estimate of the patch arrival rate. As
such, we cannot be sure the parameterized model of patch
departure decisions is optimal across all models. Leverag-
ing methods from dynamic programming commonly used
to set optimal decision policies would be a fruitful next
step in ensuring the optimality of our patch leaving de-
cision strategies.

We defined optimal patch foraging as maximizing re-
source intake. However, an alternative formulation could
consider an explicit trade-off between gathering resources
(exploitation) and gathering information about the envi-
ronment (exploration). Information foraging frames an
agent’s movement strategy by prioritizing the value of in-
formation over resource gathering [109]. In our problem,

information foraging would target strategies that reduce
the time to learn the environmental distribution of patch
qualities (as in Section V), rather than maximize the re-
ward rate, thus prioritizing the role of exploration and
sampling in foraging [48, 110–113].

Although the natural world typically offers a con-
tinuous foraging space, considering discrete resource
patches facilitates understanding by systematically dis-
secting fine scale dynamics of local search from global
search [114, 115]. Additionally, animals seems to exploit
local patches of food resources as if they had partitioned
the world into patches. Nonetheless, not all resources
exist in patches; a further extension of our theoretical
framework could consider a continuous world without
patches. Assuming some regularity in the distribution
of food, it would then be efficient to consider stochas-
tic versions of gradient ascent so the forager could orient
itself in the direction of higher food concentrations.

Another important extension will be to consider in-
teractions between agents, either through predator-prey
interactions which affect foraging decisions [116], social
foraging of groups collectively foraging [117, 118], or even
competitive foraging [119]. In our model, the agent only
receives direct (non-social) information about resource
availability; in collective foraging, an individual receives
both social and non-social information [120, 121]. This
can significantly affect foraging decisions, for example
when an individual must balance a desire to obtain more
resources with a desire to maintain group cohesion.

To conclude, our model establishes a formal framework
for a natural behavior (patch foraging) that can be stud-
ied in the same formal rigor as many trained behavioral
tasks. Guided by the philosophy that formal tractabil-
ity of a behavior entails neural mechanistic tractability,
future work will build on this framework to generate
testable hypotheses on the neural mechanistic underpin-
nings of foraging behavior.
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